
CSS mindset
Demystification course with Lateral Nord





Jerry  
Jäppinen
Product design consultant

jerryjappinen@lateralnord.com

+358 40 7188776

@jerryjappinen

mailto:jerryjappinen@lateralnord.com
https://twitter.com/jerryjappinen


1. CSS for programmers 
2. Learning to walk 
3. History lesson 
4. CSS is declarative 
5. HTML structure 
6. Worth knowing 
7. Laying things out 
8. Measurements 
9. Best practices and exercises



1. CSS for programmers 
2. Learning to walk 
3. History lesson 
4. CSS is declarative 
5. HTML structure 
6. Worth knowing 
7. Laying things out 
8. Measurements 
9. Best practices and exercises



The short version



CSS has absolutely 
nothing to do with 
programming



CSS is not intended 
for creating 
applications



...or even layouts



1. CSS for programmers 
2. Learning to walk 
3. History lesson 
4. CSS is declarative 
5. HTML structure 
6. Worth knowing 
7. Laying things out 
8. Measurements 
9. Best practices and exercises



CSS can be frustrating

• There are missing features in CSS


• We have to battle with browser incompatibilities


• Some parts of the spec are just crazy



But that's not why 
CSS is hard



It's hard because 
you never learned 
the basics 



To run, we need to 
learn how to walk



To walk, we must 
understand 
principles



Just like you need to understand the principles 
of object-oriented programming before writing 
good Java, you need to understand something 
about fundamentals before writing good CSS



If Java is about OO programming... 

Clojure is about functional programming... 

Then what is CSS about?



design



CSS is about design



O_O



CSS is a way to talk about design abstractions 

Alignments, dimensions, text, fonts, 
paragraphs, lists, colors and containers...  

When you use CSS, you break down a design 
to these fundamental properties



Views can always be described as a combination of 
these four key components 

structure, styles, behavior, content 

Simply put: you write structure in HTML, behavior in 
JS, and styles in CSS. Content is merged into 
structure when delivered to browser, but usually 
stored separately



All of this is generic. Not just web.  

Try out InDesign, you'll find tools similar to web 
technologies there. ID is for creating print materials, 
but it's a tool for implementing design just the same.  

This is why some things in CSS might seem weird to 
programmers. Rules of graphic design are very 
different from programmer math! 



1. CSS for programmers 
2. Learning to walk 
3. History lesson 
4. CSS is declarative 
5. HTML structure 
6. Worth knowing 
7. Laying things out 
8. Measurements 
9. Best practices and exercises



CSS is about styling HTML documents.  

HTML documents had, pretty much, 
paragraphs, lists, tables. Images came in at 
some point.



Originally, semantics in HTML were awful.  

When CSS came ubiquitous, poor semantics 
were the biggest hindrance to using it 
efficiently.  

(Probably still is. Make sure this isn't the case 
with you.)



Prepare to feel stupid.  

To train (which you need to do), write and style 
plain HTML documents.



Create a single HTML document with base 
styles, and then write 10 different themes for it.  

You'll find lots of practical ways to organize 
your CSS and see how graphic design breaks 
down into border widths, background colors 
and font styles.



1. CSS for programmers 
2. Learning to walk 
3. History lesson 
4. CSS is declarative 
5. HTML structure 
6. Worth knowing 
7. Laying things out 
8. Measurements 
9. Best practices and exercises



CSS is applied magically by the browser 

Even for elements created dynamically



You don't have to actually do anything. 

The people who actually write rendering 
engines are heroes who do what they do so we 
don't have to.



CSS doesn't tell a browser what to do.  

You don't command with CSS, you declare 
what kind of arrangements, dimensions, text 
and colors you recommend as an author.



But you're not the only one who gets a say



User, browser, vendor and element styles 
cascade.  

To author good CSS, pay less attention to 
applied styles of individual elements



You can also use this idea of cascading "layers" of 
CSS to organize your styling. 

For example, simply write your multiple stylesheets: 

• reset/normalization stylesheet(s) 
• default stylesheet(s) 
• global brand stylesheet(s) 
• view-specific stylesheet(s)



Browsers handle more calculations and 
conversions to render stuff on screen than you 
ever want to know.  

Read the CSS spec. It's crazy and it needs to be.  

Browsers are mean rendering machines. 
Declaration is awesome.



1. CSS for programmers 
2. Learning to walk 
3. History lesson 
4. CSS is declarative 
5. HTML structure 
6. Worth knowing 
7. Laying things out 
8. Measurements 
9. Best practices and exercises



But you just told us: structure and styles are 
separate!



They are.  

But good structure and semantics are a 
prerequisite to authoring good CSS. Just like 
painting a bumpy surface is hard.



(That's all I had to say about structure)



1. CSS for programmers 
2. Learning to walk 
3. History lesson 
4. CSS is declarative 
5. HTML structure 
6. Worth knowing 
7. Laying things out 
8. Measurements 
9. Best practices and exercises



HTML elements don't really exist in CSS, only 
arbitrary elements do.  

Browsers decide how to render HMTL 
elements (like native-looking input fields), but 
CSS doesn't really know anything about that.



Things that don't exist in CSS:  

Functions, class inheritance, grids or columns, 
mixins, variables, negation, ifs and elses, 
cancelling a declaration, centering.



The real power of CSS is flexibility.  

Like we discussed, you shouldn't really worry 
about reproducing a pixel-perfect replication of 
a mock-up on a user's screen. Your vision is 
just one of the things that affect the result.



You'll get pretty far with nothing but this. This is 
one block, one declaration.  

So that's it.

element#id.class child:pseudoclass .childclass, 
anotherElement.class {  
    attribute: value; 
    another-attribute: another-value; 
}



1. CSS for programmers 
2. Learning to walk 
3. History lesson 
4. CSS is declarative 
5. HTML structure 
6. Worth knowing 
7. Laying things out 
8. Measurements 
9. Best practices and exercises



Start of gross 
simplifications



Like I said, we learn 
to walk first



Basically, we have text and containers. 

That's inline and block.

em { display: inline; } 
p { display: block; }



Inline elements are arranged in a natural text 
flow, and are laid out according to basic 
typographic rules.  

Things like line-height, baseline and indenting 
are familiar from print designs. After this 
session, go get a Wired Magazine from the 
kitchen and look at the page.



Take an example: vertical-align 

It's not what you think it is, but it's pretty rad. 
It's about aligning inline items on a line of text.  

And also content in table cells, because the same attribute has different uses depending on 
context. Sorry about that.



CSS actually understands what's going on here!



Cool typo in CSS

• letter-spacing,


• word-spacing


• direction


• text-align


• text-justify

• text-indent


• font-variant


• text-tranform


• word-break


• word-wrap

• white-space


• baseline-shift


• drop-initial-
after-align


• ruby annotation 
styling



Block elements contain inline elements, and 
reserve room for them. Blocks have 
dimensions and can be arranged in a few 
ways. 

Box model governs the rules for the 
dimensions of block elements. Blocks are 
extensively nested. 



CSS is great at getting any content of a 
document to render sensibly 

Layouts impose limitations rendering content, 
e.g. limiting dimensions of containers 

Increasing these limitations lowers the 
threshold of breaking content rendering



In CSS content naturally flows from top to 
bottom 

You control the horizontal dimensions of 
elements, and let browser handle the vertical 
dimensions based on what fits the screen on 
any given context



End of gross 
simplifications



1. CSS for programmers 
2. Learning to walk 
3. History lesson 
4. CSS is declarative 
5. HTML structure 
6. Worth knowing 
7. Laying things out 
8. Measurements 
9. Best practices and exercises



Units of measure are awesome 

Browsers handle all the hassle of converting 
everything to pixels for you



%: relative to available space or font size 

em: the height of the font in context 
ex: x-height of the font 
px: dependent on canvas resolution  

mm: millimeters 
cm: centimeters; 1cm=10mm in: inches; 1in=2.54cm 
pt: points; 1pt=1/72in 
pc: picas; 1pc=12pt



vh: viewport height (percentage) 
vw: viewport width (percentage) 

vmin: vh or vw, whichever is lower 
vmax: vh or vw, whichever is higher



Box model allows you to mix all the available units 

Some things are a little tricky, some things are not 
doable, but many many cool things can be done 

When you want a box of given size on the screen, 
you must always think why it should be of that 
size, and use that rationale in your declarations



1. CSS for programmers 
2. Learning to walk 
3. History lesson 
4. CSS is declarative 
5. HTML structure 
6. Worth knowing 
7. Laying things out 
8. Measurements 
9. Best practices and exercises



When starting out, break down your design 
into global components 

Don't start replicating mock-ups or individual 
views



Each layout is a system 

A set of rules that govern how UI objects look 
and flow 

Express these rules in CSS



Avoid moving code from developer console to 
CSS 

In dev console, you only see a change from 
one perspective. You're focused in applied 
styles



Never add more than the minimum declarations. Touch 
only the attributes you really need and want to specify. 

Shorthands are short but express more: 

background: green; means background-image: 
none; 

Shorthands are magical and make it harder to iterate!



Don't think in hierarchies. Classes are labels, and 
allow for all kinds of permutations 

Individual views are not a good way to organize 
stylesheets by 

Try having separate stylesheets for separate 
concerns like body frame, columns, color scheme, 
text styling, button styles etc.



Organize declarations in logical chunks 

Think about how you will be looking for a style 
declaration when you spot something on the 
page and want to change it



Understand similarity vs. sameness 

Only include things in one declaration when you 
want the content to apply for everything described 
in selector, by definition 

If two blocks just happen to share characteristics, 
but could just as well not, there's a good chance 
you want to change one independent of another



Repetition (similarity vs. sameness)

#header, #footer { 
  background-color: black;  
} 
#header {  
  color: white; 
} 
#footer { 
  color: grey; 
}

#header { 
  color: white; 
  background-color: black; 
} 
#footer { 
  color: grey; 
  background-color: black; 
}



Ids are usually not good

#header, #body { 
  width: 80%; 
  max-width: 50em;  
  min-width: 10em; 
}

.frame-container { 
  max-width: 80%;  
}



Avoid excess nesting (and tools that encourage it)

.features .row1 .column2 .detail
s h1 { 
  margin-top: 1em; 
}

.title { 
  margin-top: 1em; 
}



Don't touch elements created by plugins

/* Override plugin styles to 
give more padding to graphs */ 
 
#graph-from-plugin { 
  padding: 30px; 
}

/* Override plugin styles to 
give more padding to graphs */ 
 
.my-graph-container { 
  padding: 10px; 
}



Inheritance vs. fake reset

body { 
  font-weight: normal; 
} 
 
a { 
  font-weight: bold; 
} 

a.discreet  { 
  font-weight: normal; 
}

body { 
  font-weight: normal; 
} 
 
a { 
  font-weight: bold; 
} 

a.discreet  { 
  font-weight: inherit; 
}



Trust the cascade

/* Bad */ 
* { 
  font-size: 16px; 
}

/* Good */ 
bold { 
  font-size: 16px; 
}



Don't try to fix simple problems with unnatural 
and error-prone CSS: 

• display 
• position 
• top, right, bottom, left 
• negative margins 
• z-index



That's it!



Jerry  
Jäppinen
Product design consultant

jerryjappinen@lateralnord.com

+358 40 7188776

@jerryjappinen

mailto:jerryjappinen@lateralnord.com
https://twitter.com/jerryjappinen



