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What are HCRM?

- Dynamical systems describing processes with
differential equations

- A Bayesian framework to capture uncertainties in data
and expert knowledge

- Best implemented in probabilistic programming
language such as Stan (e.g. via ‘brms’ in R) or PyMC to
model, fit and simulate



When might you consider HCRM for reserving?

Data is poor, but expert knowledge is rich

Paid and outstanding claims to be modelled
simultaneously

Insight into the underwriting cycle desired

Full distribution around cash flows needed



What are dynamical systems?

Dynamical systems are often used in physics, engineering
and epidemiology to model a deterministic process

Very flexible, but requires expert knowledge to model a
process with differential equations and to parameterise



Example: Modelling diseases
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Modelling diseases and claims are alike
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Insurance Model 1 -
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Insurance Model 2
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Insurance Model 2
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Bayesian framework

Create a data generating model first:

- Consider process and parameter distributions

Y; D(f(tjv @)7 (I))

- Consider variance structure
- Consider hierarchical structure
- Which parameters might have random effects, e.q.
vary across accident years, development years, lines
of business or entities?
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Loss ratio (%)

Example: Paid loss ratio data only
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Hierarchical model candidate

Incremental paid loss ratio for accident year i, dev period j

T~ Parametric growth
67] ~ Lognormal(n(tj; 0, ELRM), U) / curve G 9

n(t;0, ELR;)) = log(ELRy;) - (G(t;;0) — G(tj-1;0))
log(ELR);) = peLR + ;)

UGl = 9T 2
perr ~ Normal(log(0.6),0.1)
o ~ StudentT(10,0,0.025)"

zj; ~ Normal(0,1)

13



Simulated data vs observations

Posterior predictive model output against observations
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Distinguish between ELR and ULR

AY ELR (%) Est. error ULR (%) Est. error Cumulative
1991 46.6 4.4 432 1.4 50-
1992 52.7 5.4 58.7 2.2
Accident year
1993 49.7 46 53.5 2.4 40~ Y
— 1991
1994 47.4 4.8 50.2 2.9 o2 < 1992
O 30- 1993
1995 49.0 4.9 47.0 3.8 T * 1994
o 1995
1996 495 5.4 49.1 4.7 a < 1996
8 20- 1997
1997 50.5 6.1 52.2 5.7 < 1998
1999
1998 50.4 6.0 53.8 6.7 < 2000
o f
1999 48.7 6.2 49.1 7.7
§
2000 483 6.7 485 8.6 . . :
30 60 90
Development month
Estimated ELR for  Similar Projection from  Increasing
each AY, e.g. across AY latest across AY
underlying pricin ion, i
y, gp 9 obsgrvatlon, 1e ELR: Expected Loss Ratio
loss ratio requwed for ULR: Ultimate Loss Ratio, anchored to the latest actual data point
reserving
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Summary

HCRM provide transparent framework for reserving
Expert knowledge is part of the model design, not an
add-on or afterthought

Model can be useful to extract historical pricing
information from claims data

Paper has more details and case studies implemented
iN R and Stan using the ‘brms’ package as an interface

16



Reference

Gesmann, M., and Morris, J. "Hierarchical Compartmental Reserving
Models." Casualty Actuarial Society, CAS Research Papers, 19 Aug.
2020, https.//www.casact.org/sites/default/files/2021-
02/compartmental-reserving-models-gesmannmorris0820.pdf

Bookdown:
https.//compartmentalmodels.gitlab.io/researchpaper/index.html

17


https://www.casact.org/sites/default/files/2021-02/compartmental-reserving-models-gesmannmorris0820.pdf
https://compartmentalmodels.gitlab.io/researchpaper/index.html

