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INTRODUCTION

Alzheimer's Disease (AD) is a heterogenous
neurodegenerative disease expected to afflict nearly
15 million peopleovere5inthe US by 2050 (Alzheimer's
Association, 2020). Mild cognitive impairment
(MCI) is a prodromal state of AD, associated with
amnesic cognitive dysfunction distinct from normal
aging. The progression of MCI| to AD features
multiple  dysregulated physiological cascades
that characteristically feature the accumulation of
abnormally folded amyloid-B (AB) and tau proteins in
amyloid plaques and neurofibrillary tangle deposits'.
The multifactorial nature of early-stage AD suggests
multiple pathophysiological processes, including
neuroinfammmation?, synaptic degeneration?,
neuropsychiatric/neurendocrine dysfunction*® and
brain insulin resistance®, all of which are potential
targets for therapeutic intervention.

Targeted immunotherapies capable of disease
modification by reducing AB and tau burden have
failedtoinfluence AD progression in late-stage clinical
trials, and the only FDA-approved drug therapies are
symptomatic in nature with marginal and transient
clinical efficacy, highlighting the urgent need for new
approaches to disease modification’”®. Multi-targeted
drugs (MTDs) with established safety profiles could
empirically engage identified therapeutic targets®.

We propose the hypothesis that low-dose lysergic
acid diethylamide (LSD) represents a promising
disease modifying therapeutic for AD. LSD is a
classic psychedelic drug and is one of the most well-
studied psychoactive drugs in the history of modern

pharmacology™©" and shares structural similarity to
5-HT (FIGURE 1).
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FIGURE 1. illustrations of 5-HT and LSD, highlighting their
similarities in structure in color (Adapted from Nichols DE.
Serotonin, and the Past and Future of LSD. MAPS Bulletin
Spring 2013).

This article sets out the evidence and arguments for
why the pharmacology of LSD, when administered
at sub-psychoactive doses, makes it an appealing
disease-modifying therapeutic candidate for AD, and
provides background for the design and conduct of
further studies to evaluate its efficacy.

SEROTONINERGIC SYSTEM IN AGEING AND AD

5-HT isa monoamine neurotransmitter and hormone
that exerts a direct modulatory influence on nearly
all the pathological, physiological and behavioral
changes observed in AD™?®. Preclinical and clinical
data suggest that modulating 5-HT receptors may
be a useful therapeutic strategy for AD, eg. Selective
serotonin reuptake inhibitors (SSRIs) preserve
cognition, suppress microglial activation, and lower
brain AB levels in AD animal models™", while long-
term SSRI use (> 4 years) delays the conversion of
MCI to AD in MCI patients®. Because SSRIs do not
demonstrate a robust disease modifying effect
in depressed MCI patients, it is possible that the
indiscriminate activation of all 5-HT receptors in the
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CNS by 5-HT could result in opposing effects. Instead,
selective activation of only relevant 5-HT receptors
may maximize therapeutic value of 5-HT receptor
targeted therapeutics.

LSD binds to a subset of serotonin (5-HT), dopamine
and other biogenic amine receptors with different
affinities. The biological effect of LSD is related to
its receptor binding and occupancy, which in turn is
governed by the concentration of LSD to which the
receptor is exposed. At low, sub-psychoactive doses,
LSD selectively occupies several of the 5-HT receptor
subtypes (see heatmap in TABLE 1).



SEROTONINERGIC SYSTEM IN AGEING AND AD (coNT'D)

NE | NE | DA | DA | DA | DA | Hist | 5-HT | 5-HT | 5-HT | 5-HT | 5-HT | 5-HT | 5-HT | 5-HT | 5-HT
Receptor Target Bl | B2 | 2 3 4 5 1 A | D | 1E|[2a]| 2B | 2c | 5Aa | 6 7
Apparent 69 | 61 |69 | 76 | 73 | 65 | 58 | 89 | 84 | 70 | 84 | 75 | 78 | 81 | 82 | 82
affinity (-pKi)
LSD

: . . . .o
concentration Poly-pharmacological Profile (receptor sites occupancy in %)

10 nM 7 1 8 27 15 3 1 90 25 38 53 -
1nM 1 0 1 4 2 0 0 47 20 1 18 3 6 10 13 13
0.1 nM 0 0 0 0 0 0 0 8 3 0 2 0 1 1 1 2

TABLE 1. Estimated polypharmacological profile of LSD shows the fraction of each receptor type that is saturated or bound by LSD
Occupancy at different theoretical concentrations of LSD was estimated by the Hill-Langmuir equation assuming a Hill coefficient of
1Tand using the average experimental Ki values for apparent affinity at human receptors in cellular models. Source of Ki information:
CHEMBL (accessed April 2020)

NE, norepinephrine; DA, dopamine; Hist, histamine, 5-HT, serotonin

LSD is qualitatively distinct from 5-HT in that it L
differentially modulates 5-HT receptors, possessing
partial agonist, agonist and antagonist properties
at the various 5-HT receptor subtypes with the
exception of the 5-HTs and 5-HT4+ receptors,
and is quantitatively different in its activation
profile, depending on dose". We have recently
demonstrated the safety and tolerability of
chronic low dose LSD (i.e. doses up to 20 ug)
in healthy elderly volunteers®. In this study, no
physiological or behavioral effects significantly
differed from placebo and pharmacokinetic
evaluation suggest that plasma levels are in
a nanomolar concentration range consistent with
moderate occupancy and a more subtle engagement
profile at 5-HT receptors in the brain, devoid of o Vv > © ®
excessive pharmacology hallmarks (FIGURE 2, .
Table 1 see 1 nM row of polypharmacological profile). Hours post dosmg
We propose that the functional selectivity and
potency of LSD at 5-HTza receptors, which underlies
its neuropsychological psychedelic properties at
higher doses?, together with its selective modulation
of certain other 5-HT and dopamine receptors,
represents a novel polypharmacological-based
strategy for the disease modification of AD.

== 20 ug oral LSD

Plasma drug concentration

FIGURE 2. Plasma drug levels of LSD in humans after
administration of a non-psychedelic “microdose” of LSD.

The average Cuax in plasma was 0.44 ng/ml, which is equivalent
to 1.5 nanomolar (nM) concentrations. The dotted line represents
the mean per dosing group from baseline to 8 h post-dose
(adapted from: Family et al., Psychopharmacology (Berl). 2020
Mar;237(3):841-853)

LLOQ, lower limit of quantification

PRIMARY TARGET: THE 5-HT,, RECEPTOR

5-HT,a receptors exhibit the highest expression in | function?”*, and cognitive impairment correlates

cortical and subcortical areas of the human brain
relevant to AD pathobiology™®?25 Polymorphisms
in the 5-HT,, receptor gene (HTR2A) are associated
with vulnerability to AD?¢ and differences in memory
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with reductions in 5-HT,, receptor expression®. In
this section, we discuss roles of the 5-HT,, receptor
signaling relevant to AD pathobiology.
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5-HT.. and Amyloid Precursor Protein (APP)
Metabolism

MCI patients have alterations in APP processing
which lead to accumulation of AR and plaques that
correlate with reduced cortical 5-HT receptors®.
Conversely, in an animal model of streptozotocin-
induced memory deficits, the potent 5-HT,, agonist,
TCB-2, reduced AR burden3¢, while in another model
(McGill-R-Thy1-APP model of APP overexpression®)
reductions in soluble AB40 and AB42 have been
recorded following chronic administration of LSD
at 01 mg/Kg (Eleusis unpublished data). These
observations are consistent with the premise that
5-HT,,R activation exerts a therapeutic influence on
AB accumulation.

5-HT.. Receptors and Neuroplasticity

Aging is associated with decreases in
neuroplasticity®®*, and age is a primary risk factor for
dementia®®. Age-related decline in neuroplasticity
may significantly contribute to synaptic and neuronal
loss in AD#*“2. One of the key molecules underlying
synaptic plasticity and for which expression is
associated with slower cognitive decline in aging
is Brain Derived Neurotrophic Factor (BDNF)“.
Decreased BDNF receptor (TrkA and TrkB) expression
has been associated with cognitive impairment,
neurodegeneration, and increased AB plagque and

5-HT,, receptor expression

BDNF }

neurofibrillary tangle burden in patients with AD#45,
Individuals with the €4 ApoE allele variant, who
have more susceptibility to MCI and conversion to
AD#*47  exhibit disproportionate and progressive
hippocampal atrophy*®. The neurodegeneration
associated with €4 ApoE is accompanied by reduced
levels of both BDNF and 5-HT,, receptors*. Conversely,
increased TrkB expression is associated with cognitive
resilience despite detectable hippocampal AD-related
pathology®, and its protective properties on brain
function may be associated with its role in increasing
synaptic density and complexity®”'.

Animal studies have demonstrated a complex
relationship between 5-HT,, receptors, stress and
BDNF that may impact neuroplasticity (FIGURE 3)%.
Potent 5-HT,, receptor agonists upregulate mRNA
expression of genes related to synaptic plasticity
in vivo>, as well as increase BDNF levels and
attenuate hippocampal neurodegeneration and
memory impairment in animal models of
neurodegeneration®. 5-HT,, receptor agonists can
also increase BDNF receptor expression in neuronal
cells in vitro%¢. Collectively, these findings suggest
that potent 5-HT,AR activation by low dose LSD could
at least slow the progressive neurodegeneration and
memory impairment in MCl and early AD patients.

BDNF protein expression

Key:
® - 5-HT,, receptor

DO, (t)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane
BDNF, brain-derived neurotrophic factor

ctx, cortex

CPN, cortical pyramidal neuron

hpc, hippocampus

HI-N, hilar interneuron

FIGURE 3. Model for 5-HT.a-dependent modulation of BDNF in the CNS, illustrating how 5-HT could influence BDNF levels in
either direction in the cortex or hippocampus. (A) Sagittal (top) and coronal (bottom) sections of the rodent brain: saggital section
shows the expression pattern of 5-HT.a receptors; coronal section of the rodent brain highlights the neocortex (green circle) and
hippocampus (blue circle). (B) Neocortical pyramidal neuron, expressing 5-HT.a receptors which can be activated by DOI, 5-HT and
stress to enhance BDNF expression. (C) Hilar inhibitory interneuron in the hippocampus expressing 5-HT.a receptors, which can be
activated by DOI, 5-HT and stress to evoke a decline in BDNF expression. (D) Saggital section of the rodent brain showing pattern of
regional BDNF expression; the green and blue areas illustrate elevation and depression of BDNF in the neocortex and hippocampus,
respectively, by DOI, 5-HT and stress. (Adapted from: Jaggar and Minal, 2018 5-HT.x Receptors and BDNF Regulation: Implications for
Psychopathology. In: Guiard B., Di Giovanni G. (eds) 5-HT.a Receptors in the Central Nervous System. The Receptors, vol 32. Humana

Press, Cham)
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5-HT2a Receptors and Insulin Resistance

Insulin resistance (IR) is an established risk factor for
MCI and AD is also a core feature of Type 2 diabetes
(T2D), and a disease that doubles the risk of AD®57%8,
Further, metabolic syndrome is associated with
hypometabolism in key brain regions implicated
in early AD progression®, cognitive impairment,
neuritic plaque burden, inflammation, oxidative
stress, and hippocampal atrophy®®. Impaired
insulin receptor signaling in metabolic disease often
involves dysfunction in insulin receptor substrate
adaptor proteins responsible for glucose uptake and
their effectors like AKT and has been associated with
progression from MCI to AD, AB plaque burden, and
cognitive decline®-%s,

In  animal models, IR signaling and central
5-HT,. receptors appear to have a bi-directional
relationship, whereby IR in the periphery results
in increased cortical 5-HT,, receptor expression as
well as 5-HT,, receptor-mediated behavior, and
5-HT,s receptor activity can also modulate insulin-
related processes®®’,

Together these observations suggest that further
study of the role of 5-HT,, receptors and IR is merited
to clarify if 5-HT,, agonists could have therapeutic
efficacy relevant to brain IR and its associated
pathobiological role in MCl and AD.

5-HT2a Receptors and Neuroinflammation

Neuroinflammation is primarily mediated by
microglia in the brain, and has been strongly
implicated in the pathobiology of AD®. Normally,
adaptive beneficial microglial responses to AD
pathobiology include AB phagocytosis and clearance,
and the release of trophic and anti-inflammatory

factors capable of supporting neuroplasticity
and the resolution of acute inflammation®s,
However, microglia can switch and assume a

pro-inflammatory, neurotoxic phenotype during
the course of AD®7, Animal studies have
provided key insights into the deleterious effect
of inappropriate microglial activation and shown
that intracerebroventricular (ICV) injection of AR
oligomers induces depressive-like behavior, reduces
5-HT and increases Tumor Necrotic Factor alpha
(TNF-a) levels in the brain, which can be prevented
by ICV 5-HT injection”72. Microglia express 5-HTi,,
5-HT.s and 5-HT; receptors®®” and a link between
5-HT,s receptor expression and neuroinflammation
comes from animal data showing early life infection
can result in persistent upregulation of 5-HT,
receptors in the brain into adulthood”. This is
associated with increased depressive-like behaviors
and hypersensitivity to the inflammmatory effects of
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TNF-a and lipopolysaccharide”™. LSD may attenuate
neuroinflammation through direct modulation
of receptors expressed on microglia themselves.
Another pathway of anti-inflammatory effect could be
mediated indirectly via modulation of the
glucocorticoid system.

Astrocytes are the most abundant glial cell and play
a diverse range of roles in the CNS, including support
of neuroplasticity, neuronal metabolic support,
and innate immunity, and may also be relevant to
neuroinflammatory processes associated with AD.
Similar to microglia, reactive astrocytes in AD adopt
a neurotoxic status and lose their neurotrophic
abilities’. Astrocyte activation is a hallmark of late
stage AD pathology, but MCI| patients are also
observed to present with elevated reactive astrocyte
phenotype”. Reactive astrocytes in particular may be
more susceptible to modulation by 5-HT,. receptor
agonists, as increased astrocytic 5-HT,s receptor
expression has been measured in post mortem
AD brain tissue’. Excessive glucocorticoid receptor
(GR) activation, as is seen with hypercortisolemia,
reduces the neuronal support properties of
astrocytes, especially in hippocampus’, potentially
compromising its function in cognition®. LSD and
other 5-HT,s receptor agonists appear to attenuate
hypercortisolemia through normalization of GR
function® and thereby may protect astrocyte function.

Oxidative stressis believed to drive neuroinflammation
and neurodegeneration in  several diseases
including AD. Mitochondrial dysfunction resulting
in accumulation of reactive oxygen species can
reduce trophic factors, including those necessary
for glia to support neurons, and drive AB-associated
pathobiology in AD®2. 5-HT,, receptor agonists have
been found to possess potent neuroprotective
effects against oxidative stress in neuronal and
non-neuronal cell lines as well as enhance
mitochondrial function®&4,

Collectively, these results indicate that LSD
and other 5-HT,, receptor agonists may have
broad-based neuroprotective potential as therapies
in age-related neurodegenerative diseases like AD,
in which life stress, inflammmation, oxidative stress
and mitochondrial dysfunction may all play a role.

5-HT2a Receptors and Epigenetic Regulation

Cognitive  impairment has been associated
with increased expression in the hippocampus
in both aged and stressed animal models of
histone deacetylase 2 (HDAC2)8>°" an enzyme that
regulates gene transcription by increasing the
packing of chromatin, leading to transcriptional



silencing. HDAC2 overexpression can also lead to
impaired memory function and neuroplasticity®.
In contrast, suppression of HDAC2 activity can
have beneficial effects that include enhancement

of associative learning and fear extinction®
and is neuroprotective®®. In animal models,
AD-related neurotoxicity increases the HDAC2

blockade of neuroplasticity gene transcription,
and in AD patients®. HDAC2 expression is found
to be increased in early stage AD post mortem
brain, with progressive elevation of expression in

the hippocampal CAl and entorhinal cortex
regions®®,  Increased HDAC2 levels are also
associated with increased tau and reduced

neuroplasticity in AD animal models®®.

Evidence that 5-HT,. receptor signaling in the brain
is influenced by epigenetic processes relevant to AD
is complex, but atypical antipsychotics and other
5-HT,, receptor antagonists can increase HDAC2
expression and activity, producing reductions in
synaptic spine density and impaired cognitive
function®8, A mechanism by which they do this
involves downregulating an HDAC2 gene repressor,
IkBa, which results in augmentation of HDAC2
levels?. Conversely, LSD and other 5-HT,, receptor
agonists can significantly increase brain expression
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of IkBa®4%597%9 thereby repressing HDAC2 expression
and activity with the potential for enhancement of
cognitive and neuroprotective processes.

Sirtuin-1  (SIRT1), another histone deacetylase
protein encoded by the SIRTI gene, also plays a
significant role in AD pathology'®. Reduced SIRT]
expression is observed in post-mortem AD patient
brains in association with tau burden and cognitive
impairment’® and progressive decline in SIRT1 serum
concentrations have been observed in MCl and
AD patients'®. Consistent with these observations,
elevated SIRT1 expression is associated with
preserved cognitive function in AD'®, In animals,
5-HT,» receptor activation is associated with
neuroprotection in a SIRT1 dependent manner, likely
contributing to the neuroprotective properties of
5-HT'°* (FIGURE 4).

Together, these findings suggest that LSD and
other 5-HT,, receptor agonists could ameliorate
neuronal mitochondrial dysfunction in  MCI
and/or AD through epigenetic pathways associated
with HDAC2 and SIRT1.
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FIGURE 4. Model of possible mechanism for 5-HT influence of neuroprotection. 5-HT or 5-HT.4 agonists bind to the 5-HT4 receptor
expressed on cortical neurons, recruits SIRT1 via PLC and MAPK signaling pathways. SIRT1 in turn interacts with the key regulator

of mitochondrial biogenesis, PGC-1a. 5-HT and 5-HT.a receptor agonists also enhance ATP production, respiratory capacity and
antioxidant enzymes. levels and enhances expression of antioxidant enzymes in cortical neurons. These all lead potentially to 5-HT
and 5-HT.a receptor agonists mediating in conferring neuronal protection against excitotoxic and oxidative stress (adapted from:
Fanibunda et al, 2019 PNAS:116(22):11028-11037 www.pnas.org/cgi/doi/10.1073/pnas.1821332116).
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5-HT.. Receptors and Cognition

The core clinical criteria of an MCI diagnosis include
impaired memory and executive dysfunction>18,
Acute administration of 5-HT,, agonists can enhance
memory and learning™@®"™ while administration of
5-HT,s receptor antagonists can impair memory
function and learning™"” 125 By inference, an
element of cognitive decline in AD may be associated

with the observed decrease in 5-HT,. receptor
engagement.
AD-related  cognitive impairment can also

result from dysfunction of cholinergic and/or
glutamatergic neurotransmission’?®, 5-HT,, receptor
agonists can experimentally enhance cholinergic
neurotransmission and extracellular concentrations
of acetylcholine in the hippocampus?” 2, Similarly,
5-HT,. receptors, expressed on the glutamatergic
neurons and glial cells in the brain can influence
hippocampal glutamatergic signaling™°. Thus 5-HT,a
receptor agonists like LSD can enhance glutamate
release®®? and several studies have demonstrated
that LSD can acutely enhance memory consolidation
in animal models of associative, reversal, and
avoidance learning via activation of 5-HT,, receptors
in the cortex and hippocampus®™4B3  These
observations support the possibility that LSD could
positively benefit MCI/AD outcomes by directly and
indirectly modulating neurotransmitter systems in
the AD brain associated with cognitive function.

5-HT.. Receptors and Depression and Anxiety
Depression, anxiety, and apathy (collectively
referred to as “neuropsychiatric symptoms” or NPS)
are reported in 35-85% of MCI patients™ and are
predictors of both MCl and AD>®>™49, The relationship
between MCI| and NPS is complex but appears
correlated; conversion to AD is higher in patients with
NPS than in NPS-free MCI patients. Conversely,
MCI is a risk factor for depression and anxiety'?,
suggesting a shared pathobiological mechanism,
possibly related to reduced neuroplasticity.

Whether anxiety and depression have a causal
role or are symptoms of AD, therapies capable of
attenuating NPS in AD are urgently needed. LSD
has demonstrated significant antidepressant
and anxiolytic effects across a broad dose range
(30-350 pg)“*, and modern research has further
elucidated how 5-HT,, agonists can exert rapid,
persistent and clinically relevant antidepressant
and anxiolytic effects'“®, supporting the therapeutic
potential of LSD in MCl and AD patients. Indeed,
a recent study in healthy adults showed that
microdosed (13 ug) LSD with negligible subjective
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effects increased neuronal connectivity in limbic
circuits associated with depression and anxiety'”.

5-HT.. Receptors, Stress, and the HPA Axis

A connection between 5-HT,, receptor activation
and stress is that polymorphisms of the 5-HTj.
receptor (HTR,) gene correlate with lower stress
resilience™®™°, Further, LSD and other selective 5-HT,,
receptor agonists act on stress control pathways
by increasing glucocorticoid (GC) levels in animals
and humans®™5 Stress is a key factor linking
depression, anxiety, and MCI™® and dysfunctional
stress responses/dysregulation of the hypothalamic-
pituitary-adrenal  (HPA) axis are seen in
neurodegenerative diseases including AD“ In
MCI, stress has been associated with chronically
elevated GC levels (hypercortisolemia) and abnormal
glucocorticoid receptor  (GR) expression’&1s7,
and studies with SSRIs suggest that 5-HT can
normalize  stress-induced  hypercortisolemia’&>°
and increase hippocampal GR expression and
neurogenesis via GR-dependent mechanisms'®®.
Overall, current understanding of the interaction
between 5-HT,, receptor signaling and stress-related
psychopathology and impaired neuroplasticity
supports the further investigation of 5-HT
receptor-targeted therapies like LSD to normalize
HPA dysfunction in MCl and AD.



SECONDARY TARGETS: ADDITIONAL SEROTONIN AND

DOPAMINE RECEPTORS

5-HT;» Receptors

The 5-HT, receptor is widely expressed throughout
the brain. It is expressed at high densities on the
cell bodies of serotonergic neurons in the dorsal
raphe nucleus (DRN) which produce the bulk of
serotonin found in the brain, where it functions as
an autoreceptor to sense levels of 5-HT and globally
modulate presynaptic cortical release of 5-HT.
In cortical tissues, however, 5-HT,, receptors are
expressed postsynaptically, whereas 5-HT,g receptors
act as autoreceptors to sense local cortical levels of
5-HT. Imaging studies show that there is a significant
correlation between 5-HT,, receptor expression,
hippocampal hyperactivation, and cortical thinning
in AD-relevant brain regions in MCI patients"e,
There is a dynamic shift in 5-HT,» expression
between MCI and AD; a potential explanation is
that in MCI, receptor upregulation may be an early
compensatory process to preserve hippocampal
function against a conversion to AD, ultimately
featuring a loss of 5-HT,, positive neurons and a net
decrease in hippocampal expression'®163,

LSD is a potent partial agonist of 5-HT;, receptor'®+1¢7,
and there is preclinical data suggesting that some of
the behavioral effects of LSD are mediated through
this receptor'®”. Of note is that both 5-HT;s receptor
agonists and antagonists demonstrate the capacity
to enhance cognition in animal models, suggesting
a complex and site-specific role in modulation of
neuroplasticity and memory function™®. Despite
these complexities, given the putative benefits
already described for LSD mediated through the
5-HT,. receptor as a potential therapy for AD, the
current information on 5-HT;, hippocampal function
suggests on balance that LSD may also act through
the 5-HT4 receptor to help consolidate hippocampal
function, and homeostatic balance in MCI, and slow
the progression of neurodegeneration’s,

5-HTs Receptors

The 5-HTg receptor is almost exclusively expressed
in the CNS on glutamatergic neurons in the
hippocampus and cortex, and modulates excitatory
and inhibitory signaling™”. LSD is a potent full
agonist of the 5-HTg receptor with respect to Gas
pathway signaling”. The potential cellular and
behavioral effects of LSD acting at this receptor,
however, has not been investigated.

5-HT, receptor expression substantially declines
with age'”®, and expression is particularly reduced
in  AD"475,  Antagonists lead to increases in
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extracellular glutamate, dopamine, acetylcholine,
and norepinephrine levels, whereas agonists have no
effect on glutamate release but significantly increase
cortical GABA extracellular concentrations'”®”’. These
findings have led to suggestions that a 5-HT_receptor
antagonist may ameliorate cognitive dysfunction in
mild-to-moderate AD’. In large scale clinical trials,
however, three different 5-HT, receptor antagonists
failed todemonstrate therapeutic effectson cognition
or other secondary neuropsychiatric endpoints'’817,
and most notably, in mild-to-moderate AD"".

5-HTs receptor agonists, on the other hand, have
been shown to reduce levels of AR in mouse models
of AD®° Further, 5-HTs receptor agonists can
increase hippocampal and cortical BDNF expression
as well as expression of the neuroplasticity gene
arc®; and the mixed 5-HT,s/5-HTs receptor agonist,
hypidone hydrochloride, has procognitive and
memory enhancing effects in rodents®. Taken
together, these data support the idea that an
effect of LSD on 5-HTs receptors could potentially
complement LSD's putative therapeutic benefit
to AD as a result of 5-HT,, agonism, although
further directed research is required to substantiate
this hypothesis.

5-HT; Receptors

5-HT; receptors are localized anatomically in several
brain regions including those responsible for
memory like the hippocampus, hypothalamus, and
cortex, with high levels found in the suprachiasmatic
nucleus™. Although LSD has a high affinity for 5-HT,
receptors, it behaves as an antagonist'®3 however,
there is currently no data on whether LSD exerts any
promnesic effect through this receptor. Nevertheless,
the current incomplete knowledge and questions
around 5-HT,; expression, pathways, and whether
it mediates predominantly promnesic or amnesic
effects make it an interesting topic for further
investigation which may yield new insights into
therapies for AD.

Dopamine Receptors in AD and LSD

Dopamine (DA) is a ubiquitous catecholamine
neurotransmitter that mediates neuroplasticity and
memory function, among others®+>, DA modulates
synaptic function in the temporal hippocampus as
well as memory function in animals via D, receptor
signaling, whereas blockade of D, receptors can
impair cognitive function'®,



SECONDARY TARGETS: ADDITIONAL SEROTONIN AND

DOPAMINE RECEPTORS (CONT'D)

In postmortem AD brains, D,, D;, and D, receptor
expression is significantly reduced in the cortex,
and D, receptor expression is moderately reduced
in the frontal cortex™. In the hippocampus of AD
patients, D, receptor expression is reduced, and
these reductions are associated with cognitive
dysfunction™. Impaired memory function in
rodent models of AD is associated with AB burden,
which is correlated with decreased cortical DA
levels, specifically in the hippocampus™®®®°. These
data suggest that hippocampal DA neurons are
particularly vulnerable to AR toxicity, and that
therapies that enhance dopaminergic signaling
may attenuate cognitive dysfunction in early AD.
For example, in AD patients, D, agonists increase
cortical excitability, neuroplasticity, and restore
central cholinergic transmission™®2, Furthermore,
the mixed DA receptor agonist apomorphine

Thisreview explored the influence of 5-HT,, receptors
and potent agonists like LSD on symptoms and
pathologies associated with AD, ranging from
cognitive decline and neuropsychiatric symptoms,
through chronic stress, neuroinflammation and
abnormal APP processing to brain IR. We also
reviewed the evidence for a role of 5-HT and
5-HT,, receptors in the development of MCI and
AD (FIGURE 5). It is clear from the various lines
of evidence discussed herein, some strong and
others more inferential, that selective activation
of 5-HT,, combined with mixed activity at several
other monoamine receptors can have positive
effects in potentially normalizing some of the
dysfunctional processes that are known to occur
during the development of MCI and progression to
AD. LSD itself has recently been studied at low and
non-hallucinogenic doses in a small population of
older healthy adults and found to be safe and well
tolerated®™. This safety study has established the
foundation for follow-on studies of repeated low
dose LSD in AD patients to definitively demonstrate
clinically meaningful results in the disease
modification of AD.
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reduces intraneuronal AB and tau levels, attenuates
cognitive impairment, and reduces biomarkers of
oxidative stress in the 3xTg-AD mouse model™:.

LSD has a moderate affinity for all dopamine
receptors, where it acts as an agonist?96207208209 |
addition to direct stimulation, LSD significantly
increases D, receptor expression and agonist
induced signaling indirectly through 5-HT, receptor
activity™4.

Taken together, this evidence suggests that LSD
could have a beneficial effect in MCI and possibly
in early AD as long as most DA neurons are still
intact, by facilitating dopaminergic signaling. That
being the case, this would predict LSD to have
pro-cognitive therapeutic efficacy in the treatment
of MCl and AD.

OVERALL PERSPECTIVES
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FIGURE 5. Schematic illustrating the potential molecular
targets of LSD implicated in the development of MCI and its
progression to AD
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