
SQL Server – EXECUTE Statement with RESULT SET Clause Page 1

Copyright @2016 PTR associates Limited www.ptr.co.uk

SQL Server – EXECUTE Statement with RESULT SET

Clause

SQL Server 2012 introduced a RESULT SET clause to the EXECUTE statement.

It can be used to specify alternate data types and column names for result sets returned by

an EXECUTED statement or Stored Procedure.

The following example shows its use with an ad-hoc query example.

 The first query uses the RESULT AS clause to define the names datatypes for three

returned columns.

 The second query uses a CAST and column aliasing to achieve the same result.

SQL Server – EXECUTE Statement with RESULT SET Clause Page 2

Copyright @2016 PTR associates Limited www.ptr.co.uk

The RESULT SET clause is more useful when working with Stored Procedures that provide

no opportunity to change the column names defined within the stored procedure or the data

types derived in the underlying Transact SQL code within the procedure.

The following example shows a stored procedure definition and then an EXECUTE

statement that changes the column names and data types of the results set returned by the

stored procedure.

SQL Server – EXECUTE Statement with RESULT SET Clause Page 3

Copyright @2016 PTR associates Limited www.ptr.co.uk

The following example demonstrates that multiple results sets can be handled where a

stored procedure returns more than one result set.

SQL Server – EXECUTE Statement with RESULT SET Clause Page 4

Copyright @2016 PTR associates Limited www.ptr.co.uk

The examples are based on the AdvetureWorks2014 database. Here is the code for the

examples in this document:

--Using the RESULT SETS clause of the EXECUTE Statement

--Rename and retype results from a SELECT statement
EXEC ('SELECT OrganizationLevel, BusinessEntityID, JobTitle FROM HumanResources.Employee')
WITH RESULT SETS
(
 ([Reporting Level] VARCHAR(3),
 [ID of Employee] int NOT NULL,
 [Employee Job Title] nvarchar(50) NOT NULL)
);

--The above could be done as follows
SELECT
 CAST(OrganizationLevel AS VARCHAR(3)) AS [Reporting Level],
 BusinessEntityID AS [ID of Employee] ,
 JobTitle AS [Employee Job Title]
FROM HumanResources.Employee

--With a Stored Procedure
CREATE PROC GetEmployeeLevel
AS
 SELECT OrganizationLevel, BusinessEntityID, JobTitle FROM HumanResources.Employee
GO

EXEC GetEmployeeLevel
WITH RESULT SETS
(
 ([Reporting Level] VARCHAR(3),
 [ID of Employee] int NOT NULL,
 [Employee Job Title] nvarchar(50) NOT NULL)
);

--Stored Procedure that returns two results sets
CREATE PROC GetEmployeeNamesAndTitles
AS
 SELECT BusinessEntityID, FirstName + ' ' + LastName FROM Person.Person
 SELECT OrganizationLevel, BusinessEntityID, JobTitle FROM HumanResources.Employee
GO

EXEC GetEmployeeNamesAndTitles
WITH RESULT SETS
(
 (
 [ID Of Employee] INT NOT NULL,
 [Name Of Employee] VARCHAR(100)
),

 (
 [Reporting Level] VARCHAR(3),
 [ID of Employee] INT NOT NULL,
 [Employee Job Title] NVARCHAR(50) NOT NULL
)
);

If you are itching to learn more why not book on to our SQL Server Database

Querying training courses? This link will take you to the course outlines:

http://ptr.co.uk/databases-business-intelligence-courses.

http://ptr.co.uk/databases-business-intelligence-courses

