SQL Server — Aggregate Functions with OVER Clause

Page 1

SQL Server — Aggregate Functions with OVER Clause

Did you know that you can use the SQL Server aggregate functions SUM, COUNT, MAX,
MIN and AVG with an OVER Clause now?

Using an OVER clause you can produce individual record values along with aggregate

values to different levels, without using a GROUP BY clause.

Aggregate to different Levels

Generate a Running Total

Aggregate To Different Levels with OVER (PARTITION BY)

The following example shows individual order records along with the grand total of all sales,
the annual revenue for the year of the order and the total customer revenue for the customer
that placed the order.

100 %o

= T ot e 2 R —

i S T ==]
M own e W R = 3

Sl

= | =
L= =l ==

E]
H]

Copyright @2016 PTR associates Limited

S|SELECT YEAR(OrderDate), SalesOrderID, CustomerID, TotalDue,

SUM(TotalDue) OVER() AS 'Total Business Sales’,
SUM(TotalDue) OVER (PARTITION BY YEAR(OrderDate)) AS 'Total Annual Sales',

SUM(TotalDue) OVER (PARTITION BY YEAR(CustomerID)) AS
FROM Sales.SalesOrderHeader
ORDER BY CustomerID, YEAR(OrderDate)

-

[Results 3 Messages

(Mo column name)

2013
2013
2011
2013
2014
2011
2013
2013
201
2013
2013
2011
2013
2013
2011
2013
2013
2011

andn

SalesOrderlD
43753
51522
h7418
43767
51493
T2TT3
43736
51238
53237
43701
51315
57783
43810
B7293
51595
43704
51612
57361
43819

connT

CustomerlD
11000
11000
11000
11001
11001
11001
11002
11002
11002
11003
11003
11003
11004
11004
11004
11005
11005
11005
11006

RELLY S

TotalDue
3756.989
2587.8769
27702682
3729 364
26740227
650 8008
3756.989
2535.964
2673.0613
3756.989
2562.4508
26744757
3756.989
2673.0613
2626.5408
3729 364
2610.3084
2634 3574
3756.985

ArTA WTa

Total Business Sales

123216786.1159
123216786.1159
123216786.1159
123216786.1159
123216786.1159
123216786.1159
123216786.1159
123216786.1159
123216786.1159
123216786.1159
123216786.1159
123216786.1159
123216786.1159
123216786.1159
123216786.1159
123216786.1159
123216786.1159
123216786.1159
123216786.1159

A7nadsTne 4400

Total Annual Sales
14155699.525
48565887 9632
48565887 5632
14155699 525
48565887 9632
224154598 3157
14155699 525
48965887 9632
48965887 9632
14155699.525
48965887 9632
48965887 9632
14155699.525
48965887 9632
48565887 9632
141556595 525
48565887 9632
48565887 9632
14155699 525

ANNCCR0T e

'Total Customer 5ales’

Total Customer Sales
114171771
114171771
1141717 71
1141717 71
1141717 7
1141717 7
11417177
114171771
114171771
114171771
114171771
114171771
114171771
114171771
114171771
1141717 71
1141717 71
1141717 7
1141717 7

11847 T

www.ptr.co.uk

SQL Server — Aggregate Functions with OVER Clause Page 2

SUM(TotalDue) OVER() AS 'Total Business Sales'

This expression produces a grand total across the whole data set. There is no partitioning of
the data. This is why every record shows the same value for the “Total Business Sales”
column.

SUM(TotalDue) OVER (PARTITION BY YEAR(OrderDate)) AS 'Total Annual Sales'

This expression instructs SQL Server to group (partition) the data by the YEAR of the
orderdate and produce an annual sales total. You will see that this value is the same for
each common year.

SUM(TotalDue) OVER (PARTITION BY CustomerID) AS 'Total Customer Sales'

This expression instructs SQL Server to group (partition) the data by the CustomerID and
produce a customer sales total. You will see that this value is identical where the
CustomerlID for an order is the same.

The OVER clause can be used with all of the aggregate functions.

The following example displays individual SalesOrderDetail records along with the total
guantity ordered for the order, the average order quantity for the order, the number of items
on the order, the lowest order quantity on the order and the highest quantity on the order.

—|SELECT SalesOrderID, ProductID, OrderQty
L SUM{OrderQty) OVER(PARTITION BY SalesOrderID) AS 'Total Quantity Ordered’
LAVG(OrderQty) OVER(PARTITION BY SalesOrderID) A5 “"Average Quantity Ordered”
SCOUNT(OrderQty) OVER(PARTITION BY SalesOrderID) AS "Number OF Items On Order™
JMIN(OrderQty) OVER(PARTITION BY SalesOrderID) AS “"Lowest Quantity Ordered”
LAY (OrderQty) OVER(PARTITION BY SalesOrderID) A5 "Highest Quantity Ordered”
FROM Sales.SalesOrderDetail

00% -

[Resutts [J3 Messages

SalesCOrder! ProductlD OrderCty Total Quartity Ordered Average Quantity Ordered Mumber Of kems On Order Lowest Quartity Ordered Highest Quantity Ordered
y TR i] % 5 12 1 g
T —) % 5 12 1 g
3 43655 78 1 26 2 12 1 6
4 43655 7 1 26 2 12 1 6
5 43655 772 1 26 2 12 1 6
6 43655 73 2 26 2 12 1 6
7 43655 74 1 26 2 12 1 6
8 43655 T4 3 26 2 12 1 6
5 43655 T8 1 26 2 12 1 6
10 43659 709 6 26 2 12 1 6
11 43653 nz 2 26 2 12 1 6
12 43659 1 4 26 2 12 1 6
13 43660 762 1 2 1 2 1 1
14 43660 758 1 2 1 2 1 1

Copyright @2016 PTR associates Limited www.ptr.co.uk

SQL Server — Aggregate Functions with OVER Clause Page 3

Running Totals With The ORDER BY Sub Clause
The ORDER BY sub clause enables a running total to be generated.

The following example shows the monthly revenue for each month, along with the running
total for the year.

—ISELECT DISTINCT YEAR(OrderDate) AS OrderYear, MONTH(OrderDate) AS OrderMonth,
SUM(TotalDue)
OVER(PARTITION BY YEAR(OrderDate),MONTH{OrderDate)
ORDER BY YEAR(OrderDate),MONTH(OrderDate)) AS "Monthly Revenue",
SUM(TotalDue)
OVER(PARTITION BY YEAR(OrderDate)
CRDER BY MONTH(OrderDate)) AS "Running Revenue Total"
FROM Sales.SalesOrderHeader
ORDER BY YEAR(OrderDate), MONTH(OrderDate)
100 % =
[Results 3 Messages
OrderYear OrderMorth Manthly Revenue Running Revenue Total
1 5 567020.3458 567020.5438
2 \2[}-11 1 6 507096.469 10741174188
3 20M 7 2252182.8828 3366300.3016
4 201 8 2800576.1723 61668764739
5 20M] 554791.6082 67216680821
6 20M 10 5156269.5251 118779376112
7 20M 1 815313.0152 126532506264
] 20M 12 1462448 BSB6 141556599.525
] 202 1 4458337 4444 4458337 4444
0 202 2 1645051.5001 6107389.3445
1 202 3 33363474716 54437368161
12 2012 4 1871923.5039 11315660.32
13 2012 5 34525924 4537 14768584.7737
14 2012 6 46106472153 193759231.989
15 2012 7 3840231.459 23215463 448
16 2012 8 24424511831 256619146311
7 22] 3881724.186 29543638.8171
18 2012 10 2858060.157 32401659.0141
19 2012 1 2097153.1292 34458852.1433
20 2012 12 31768481687 37675700312
21 2013 1 2340061.5521 2340061 5521
¥ 3 3 IENNTI R OEET Aadn3on 4109

We see that the totals for each month are different and the fourth column shows the total
growing through the months of the year, but the running total starts again when a new year
starts.

If we look at December 2011, the value 14155699.525 is the total of all 12 months for 2011.
If we look at June 2011, the value 1074117.4188 is the total for May and June 2011.

Copyright @2016 PTR associates Limited www.ptr.co.uk

SQL Server — Aggregate Functions with OVER Clause Page 4

SUM(TotalDue)
OVER(PARTITION BY YEAR(OrderDate)
ORDER BY MONTH(OrderDate)) AS "Running Revenue Total"

The OVER clause for the fourth column, “Running Revenue Total” has both a PARTITION
and ORDER BY sub clause.

e The PARTITION BY defines the group to be the YEAR
e The ORDER BY defines that we evaluate the annual total after each month

Without the ORDER BY Clause the annual total is evaluated after each year (the partition
determines the order). We can see this in the following example:

—ISELECT DISTINCT YEAR(OrderDate) AS OrderyYear, MONTH(OrderDate) AS OrderMonth,
SUM(TotalDue)
OVER(PARTITION BY YEAR(OrderDate),MONTH(OrderDate)

--ORDER BY YEAR(OrderDate),MONTH(OrderDate)
) AS "Monthly Rewvenue",
SUM(TotalDue)
OVER(PARTITION BY YEAR(OrderDate)
--0ORDER BY MONTH(OrderDate)
) AS "Running Revenue Total"
FROM Sales.SalesOrderHeader
ORDER BY YEAR(OrderDate), '-':IlTH-.OrderDateﬂ

100 % -

T Results _'j Messages
Orderfear OrderMonth Monthly Revenue Running Revenue Total

1 i 5 5670209498 14155659525
2 6 507096 469 14155659525
3 2m 7 2252182 8828 14155659525
4 2m 8 2800576.1723 14155659525
5 2m 9 55475916082 14155659525
6 2m 10 51562655291 14155659525
7 2m 1 215313.0152 14155659525
] 2m 12 1462448 8986 14155659525
5 2m2 1 4458337 4444 37675700.312
10 212 2 1645051.5001 37675700.312
1 202 3 3336347.4716 37675700.312
12 22 4 18715923.5035 37675700.312
13 202 5 34525924 4537 37675700.312
14 202 6 4610647.2153 37675700.312
15 202 7 3840231.459 37675700.312
16 2012 8 2442451.1831 37675700.312
7 22 9 3381724.186 37675700.312
12 22 10 2853060.197 37675700.312
19 202 1 2037153.1232 37675700.312
20 212 12 3176848.1687 37675700.312
21 2013 1 2340061.5521 489658879632

Copyright @2016 PTR associates Limited www.ptr.co.uk

SQL Server — Aggregate Functions with OVER Clause Page 5

The examples are based on the AdventureWorks2014 database. Here is the code for the
gueries used in this document:

--individual order records along with the grand total of all sales,
--the annual revenue for the year of the order and the
--total customer revenue for the customer that placed the order.
SELECT YEAR(OrderDate), SalesOrderID, CustomerID, TotalDue,
SUM(TotalDue) OVER() AS 'Total Business Sales',
SUM(TotalDue) OVER (PARTITION BY YEAR(OrderDate)) AS 'Total Annual Sales',
SUM(TotalDue) OVER (PARTITION BY CustomerID) AS 'Total Customer Sales'
FROM Sales.SalesOrderHeader
ORDER BY CustomerID, YEAR(OrderDate)

--Individual SalesOrderDetail records along with the total quantity ordered for the order,

--the average order quantity for the order, the number of items on the order,

--the lowest order quantity on the order and the highest quantity on the order

SELECT SalesOrderID, ProductID, OrderQty
,SUM(OrderQty) OVER(PARTITION BY SalesOrderID) AS 'Total Quantity Ordered’
,AVG(OrderQty) OVER(PARTITION BY SalesOrderID) AS 'Average Quantity Ordered’
,COUNT (OrderQty) OVER(PARTITION BY SalesOrderID) AS 'Number Of Items On Order'
,MIN(OrderQty) OVER(PARTITION BY SalesOrderID) AS 'Lowest Quantity Ordered’
,MAX(OrderQty) OVER(PARTITION BY SalesOrderID) AS 'Highest Quantity Ordered’

FROM Sales.SalesOrderDetail

--Monthly Total & Running Total within each year

SELECT DISTINCT YEAR(OrderDate) AS OrderYear, MONTH(OrderDate) AS OrderMonth,
SUM(TotalDue)
OVER(PARTITION BY YEAR(OrderDate),MONTH(OrderDate)
ORDER BY YEAR(OrderDate),MONTH(OrderDate)) AS "Monthly Revenue",
SUM(TotalDue)
OVER(PARTITION BY YEAR(OrderDate)
ORDER BY MONTH(OrderDate)) AS "Running Revenue Total"
FROM Sales.SalesOrderHeader
ORDER BY YEAR(OrderDate), MONTH(OrderDate)

--Monthly Total & Annual Total
SELECT DISTINCT YEAR(OrderDate) AS OrderYear, MONTH(OrderDate) AS OrderMonth,
SUM(TotalDue)
OVER(PARTITION BY YEAR(OrderDate),MONTH(OrderDate)
--ORDER BY YEAR(OrderDate),MONTH(OrderDate)
) AS "Monthly Revenue",
SUM(TotalDue)
OVER(PARTITION BY YEAR(OrderDate)
--ORDER BY MONTH(OrderDate)
) AS "Running Revenue Total"
FROM Sales.SalesOrderHeader
ORDER BY YEAR(OrderDate), MONTH(OrderDate)

If you are itching to learn more why not book on to our SQL Server Database
Querying training courses? This link will take you to the course outlines:

http://ptr.co.uk/databases-business-intelligence-courses.

Copyright @2016 PTR associates Limited www.ptr.co.uk

http://ptr.co.uk/databases-business-intelligence-courses

