SQL Server — Create Detail From Summary Page 1

SQL Server — Create Detail From Summary

A while back | was asked what the best approach would be to produce a report in SQL
Server Reporting Services (SSRS) that showed the predicted total donation value per month
for a charity. The reason this had presented a challenge was that the data was captured via
a Microsoft Dynamics solution and the records in the database were stored in a format
similar to those shown below:

- f*

PledgeID Danor PledgeAmount FirstPaymentDate Frequency EstimatedEndDate
1 Fred 5ae . e 281@-81-81 @6.00:00.000 6 2818-86-081 96.00:00.000
2 Mary 2488 .88 2818-85-85 0B:80:00.288 12 2818-18-16 08:86:00.000

*

DROP TABLE Pledge
a0

—ICREATE TABELE Pledge

PledgeID INT,

Donor WARCHAR(186),
PledgeAmount MONEY,
FirstPaymentDate DATETIME,
Frequency INTJ
EstimatedEndDate DATETIME

a0
—IINSERT INTO Pledge
VALUES (1, 'Fred', 580.88, '2818-81-81 #9:89:00.898', 6, '2019-26-81 29:908:90.888'),

(2, 'Mary', 2488.88, '2818-85-85 98:89:09.888', 12, '29198-18-19 909:88:808.888"')
a0

As you can see, each pledge made is stored as a single pledge amount, along with how
many separate monthly payments they wish to make, and when they wish to start their
payments.

My solution to this challenge was to convert the data into a set of monthly payments using a
Common Table Expression (CTE) and then feed that translated data into an SSRS report.

You will find a script for this whole solution here.

Copyright @2016 PTR associates Limited www.ptr.co.uk

http://www.ptr.co.uk/cte.txt

SQL Server — Create Detail From Summary

So, this is how | would like to see the data that feeds the SSRS report dataset:

Page 2

PledgelD | Donor Monthly | Payment Date Payment
Payment Index

1 Fred 100.00 2010-01-01 00:00:00.000 | O

1 Fred 100.00 2010-02-01 00:00:00.000 |1

1 Fred 100.00 2010-03-01 00:00:00.000 |2

1 Fred 100.00 2010-04-01 00:00:00.000 |3

1 Fred 100.00 2010-05-01 00:00:00.000 |4

1 Fred 100.00 2010-06-01 00:00:00.000 |5

2 Mary 200.00 2010-05-05 00:00:00.000 | O

2 Mary 200.00 2010-06-05 00:00:00.000 |1

2 Mary 200.00 2010-07-05 00:00:00.000 |2

2 Mary 200.00 2010-08-05 00:00:00.000 |3

2 Mary 200.00 2010-09-05 00:00:00.000 |4

2 Mary 200.00 2010-10-05 00:00:00.000 |5

2 Mary 200.00 2010-11-05 00:00:00.000 |6

2 Mary 200.00 2010-12-05 00:00:00.000 |7

2 Mary 200.00 2011-01-05 00:00:00.000 | 8

2 Mary 200.00 2011-02-05 00:00:00.000 |9

2 Mary 200.00 2011-03-05 00:00:00.000 |10

2 Mary 200.00 2011-04-05 00:00:00.000 |11

CTEs are perfect for any kind of recursive querying.

Here is the query | used:

—-|[WITH CTEPledgesi(PledgelIDl, Donor, PledgeAmount, PledgeDate, Level
AS

SELECT PledgelD, Donor, p.PledgefAmount/Freguency, FirstPaymentDate, @

FROM Pledge AS p
UNION ALL

S5ELECT p.PledgelID, p.Donor, p.PledgeAmount/Frequency,
DATEADD(MONTH, Level + 1, FirstPaymentDate), Lewvel + 1
FROM Pledge as p
IMMER JOIN CTEPledges AS cp
ON p.PledgelID = cp.pledgelD
AMD Lewvel + 1 < Freguency

SELECT *#

FROM CTEPledges
ORDER BY 1, 4

Copyright @2016 PTR associates Limited

www.ptr.co.uk

SQL Server — Create Detail From Summary Page 3

The first part of the CTE query (before the UNION ALL) loads the parent records (the two
pledge records) along with an initial payment amount and date.

The second part of the CTE query (after the UNION ALL) uses the parent records that have
been loaded into the CTE to add an increment to the month of the start date to generate the
series of donation payment dates.

The increment to add to the month is provided through the derived column called “Level”.

e In the first part of the CTE this is set to the literal value of 0.
¢ Inthe second part of the CTE this is set to the parent record’s Level value plus 1.

Here is the resulting data set:

£ Results _'_1 Messages
PledgelDl Donor Pledgefmourt PledgeDate Level
1 1 ' Fred 100.00 2010-01-01 00:00:00.000 O
2 1 Fed 100.00 2010-02-01 00:00:00.000 1
1 Fred 10000 2010-03-01 00:00:00.000 2
4 1 Fred 10000 2010-04-01 00:00:00.000 3
51 Fred 10000 2010-05-01 00:00:00.000 4
g 1 Fred 10000 2010-06-01 00:00:00.000 5
72 Mary 20000 2010-05-05 00:00:00.000 0
g 2 Mary 200.00 2010-06-05 00:00:00.000 1
5 2 Mary 200.00 2010-07-05 00:00:00.000 2
0 2 Mary 200.00 2010-08-05 00:00:00.000 3
1n 2 May 200.00 2010-09-05 00:00:00.000 4
12 2 Mary — 200.00 2010-10-05 00:00:00.000 5
11 2 Mary 200.00 2010-11-05 00:00:00.000 &
14 2 May 20000 2010-12-05 00:00:00.000 7
15 2 Mary 20000 2011-01-05 00:00:00.000 8
6 2 Mary 200.00 20110205 00:00:00.000 9
7 2 Mary 200.00 2011-03-05 00:00:00.000 10

18 2 Mary 200.00 2011-04-05 00:00:00.000 11

Copyright @2016 PTR associates Limited www.ptr.co.uk

SQL Server — Create Detail From Summary Page 4

This query can now be used behind a dataset in an SSRS report to generate the monthly
summary report.

Alternatively, you could simply use a GROUP BY clause on the final SELECT of the CTE to
generate a quick monthly summary as shown below:

—IWITH CTEPledges(PledgelID, Donor, PledgeAmount, PledgeDate, Level)

PunanuuniR P

SELECT PledgeID, Donor, p.Pledgefmount/Frequency, FirstPaymentDate, @
FROM Pledge AS p

UNION ALL

SELECT p.PledgelDl, p.Donor, p.PledgeAmount/Frequency,
DATEADD(MONTH,Level + 1, FirstPaymentDate), Level + 1
FROM Pledge as p
INMER JOIN CTEPledges AS cp
ON p.PledgeIl = cp.pledgeID
AND Level + 1 < Fregquency
]

~ISELECT year(Pledgedate), DATENAME(MONTH,PledgeDate), SUM(RledgeAmount)
FROM CTEPledges
GROUP BY wear(EEEE'EEE'EME:'J DATENAME('-':HTHJE_lMEg_g_QDMQEEJ

ORDER BY 1, 2|

£ Resutts [J3 Messages
(Mo column name) (No column name) (Mo column name)

1 2010 : Al 100.00
2 2010 August 200.00
3 2010 December 200.00
4 2010 February 100.00
7] 2010 January 100.00
6 2010 July 200.00
7 2010 June 300.00
8 2010 March 100.00
9 2010 May 300.00
10 2010 Movember 200.00
11 2010 October 200.00
12 2010 September 200.00
13 2M April 200.00
14 2N February 200.00
15 20M January 200.00
1% 201 March 200.00

If you are itching to learn more why not book on to our SQL Server Database
Querying training courses? This link will take you to the course outlines:

http://ptr.co.uk/databases-business-intelligence-courses.

Copyright @2016 PTR associates Limited www.ptr.co.uk

http://ptr.co.uk/databases-business-intelligence-courses

