CSCI 340: Computational Models

Post Machines

Chapter 20

An

Aside on Algorithms

“An algorithm is a procedure with instructions so detailed that
no further information is necessary”

Goal: Create a “universal algorithm machine”

In 1936, Emil Post created a Post machine — which he hoped
would be a “universal algorithm machine”

Requires: Universal algorithm machines must accept any
language which can be defined by humans

10

Post Machines

Definition
A Post Machine, denoted PM, is a collection of five things:
@ An alphabet ¥ of input letters and the special symbol #

® A linear storage location called the STORE. We can read the
leftmost character in the store and add a new character to the
“end” (rightmost location) of the STORE. We allow for characters
not in X to be used in the STORE — usually denoted as T

® READ states which remove the leftmost character from the

STORE and branch accordingly
a

_— #

b

2/10

Post Machines

] Definition (continued)

® ADD states which concatenate a character onto the right end of
the string in the STORE. (This is the “opposite” of a PDA PUSH
state). No branching can take place. Letters from X and T can be
ADDed to the STORE.

—| ADD b

—>

® A START state (unenterable) and some halt states called
ACCEPT and REJECT. REJECT states are optional.

START

—+(REJECT
—(ACCEPT

3/10

Example

START

ADD #

Trace: aaabbb

%?L

ACCEPT

a

ADD b

10

Example #2

START

ADD#

Qi3

ACCEPT

ADD a

ADD b

ADD a

Simulatinga PM on a TM
_

Theorem

Any language that can be accepted by a PM can be accepted by some TM

Proof.

® START states remain unchanged
® ACCEPT states can be renamed to HALT
® REJECT states can be removed

® READ states should move the TAPE-HEAD to the first non-A
character on the TAPE. (a, a, L)

#.#. D
(b, b, L)

6/10

Simulating a PM ona TM
__

Proof.
® ADD states should move the TAPE-HEAD to the “end” of the
tape and insert the character to the END

(a,a, R)
(b, b, R)
(#.#. R)

Ay, L
—[ADDy |~ (yL)

7/10

Simulating a TM on a PM

g 7hcoem

Any language that can be accepted by a TM can be accepted by some PM

Key: use # to indicate the “tape” boundary separator
TAPE may store any of X, T', #, A

TAPE-HEAD will always be the front of the STORE
When we read from the TM, we READ from the PM
When we write to the TM, we ADD to the PM

When we move to the left, we have to rotate all of the elements
in our STORE right (cyclically)

When we move to the right, we don’t have to do anything

START needs a secondary ADD # state immediately after. Any
cycles will go to this new ADD state

O

8/10

Simulating a TM on a PM

|
Converting transition of (X, Y, R)

X
ADD FRONT Y

Converting transition of (X, Y, L)

X
ADD FRONT Y — | ROTATE

Changing START

START ADD # —

!

™™ = PM

® PM C TM because we can show how to convert a PM toa TM
® TM C PM because we can show how to convert a TM to a PM

® PM = TM because of the above two claims

10/10

