
CSCI 340: Computational Models

Post Machines

Chapter 20 Department of Computer Science

An Aside on Algorithms

• “An algorithm is a procedure with instructions so detailed that
no further information is necessary”
• Goal: Create a “universal algorithm machine”
• In 1936, Emil Post created a Post machine – which he hoped

would be a “universal algorithm machine”
• Requires: Universal algorithm machines must accept any

language which can be defined by humans

1 / 10

Post Machines

Definition
A Post Machine, denoted PM, is a collection of five things:

1 An alphabet Σ of input le�ers and the special symbol #

2 A linear storage location called the STORE. We can read the
le�most character in the store and add a new character to the
“end” (rightmost location) of the STORE. We allow for characters
not in Σ to be used in the STORE — usually denoted as Γ.

3 READ states which remove the le�most character from the
STORE and branch accordingly

READ #

a

b

2 / 10

Post Machines
Definition (continued)

4 ADD states which concatenate a character onto the right end of
the string in the STORE. (This is the “opposite” of a PDA PUSH
state). No branching can take place. Le�ers from Σ and Γ can be
ADDed to the STORE.

ADD b

5 A START state (unenterable) and some halt states called
ACCEPT and REJECT. REJECT states are optional.

START

REJECT

ACCEPT

3 / 10

Example

START

ADD # READ1 READ2 READ3

ACCEPT ADD a ADD b

a

#

b

a

#

b

Trace: aaabbb

4 / 10

Example #2

START

ADD #

READ1 READ2 READ3 READ4

ACCEPT ADD a ADD b ADD a

a

#

b

a

a

b

#

a

5 / 10

Simulating a PM on a TM

Theorem
Any language that can be accepted by a PM can be accepted by some TM

Proof.

• START states remain unchanged
• ACCEPT states can be renamed to HALT
• REJECT states can be removed
• READ states should move the TAPE-HEAD to the first non-∆

character on the TAPE.

READ #

a

b

q0 q1

(a, a, L)

(#,#, L)

(b, b, L)

(∆, ∆, R)
(b, ∆, R)

(a,
∆,

R)

(#, ∆, R)

6 / 10

Simulating a PM on a TM

Proof.

• ADD states should move the TAPE-HEAD to the “end” of the
tape and insert the character to the END

ADD y q0

(a, a, R)
(b, b, R)
(#,#, R)

(∆, y, L)

�

7 / 10

Simulating a TM on a PM

Theorem
Any language that can be accepted by a TM can be accepted by some PM

Proof.

• Key: use # to indicate the “tape” boundary separator
• TAPE may store any of Σ, Γ, #, ∆
• TAPE-HEAD will always be the front of the STORE
• When we read from the TM, we READ from the PM
• When we write to the TM, we ADD to the PM
• When we move to the le�, we have to rotate all of the elements

in our STORE right (cyclically)
• When we move to the right, we don’t have to do anything
• START needs a secondary ADD # state immediately a�er. Any

cycles will go to this new ADD state

� 8 / 10

Simulating a TM on a PM

Converting transition of (X ,Y , R)

READ ADD FRONT Y
X

Converting transition of (X ,Y , L)

READ ADD FRONT Y ROTATE
X

Changing START

START ADD #

9 / 10

TM = PM

Proof.

• PM ⊆ TM because we can show how to convert a PM to a TM
• TM ⊆ PM because we can show how to convert a TM to a PM
• PM = TM because of the above two claims

�

10 / 10

