
The Many-to-Many
Relationship

Fearful concatenation of circumstances

Daniel Webster

2

3

A sales form

4

The many-to-many
relationship

Create a third entity to map an m:m
relationship

An associative entity
The + on the crow's foot indicates that
LINEITEM is identified by
concatenating saleno and lineno

LINEITEM is
known as a weak
entity, and it has
an identifying
relationship with

SALE

5

The many-to-many
relationship

MySQL Workbench

m:m
symbol

6

The many-to-many
relationship

MySQL Workbench

Identifying
relationship

Non-identifying
relationship

7

Why a third entity?

Store data about the relationship
Think of an m:m as two 1:m
relationships

8

Creating a relational
database

Same rules apply
The associative table has two foreign keys

One for each of the entities in the m:m relationship
A foreign key can also be part of the primary key
of an associative entity

lineitem

lineno lineqty lineprice saleno itemno

1 1 4.50 1 2

1 1 25.00 2 6

2 1 20.00 2 16

3 1 25.00 2 19

9

Creating a relational
database

CREATE TABLE sale (
saleno INTEGER,
saledate DATE NOT NULL,
saletext VARCHAR(50),

PRIMARY KEY(saleno));

CREATE TABLE item (
itemno INTEGER,
itemname VARCHAR(30) NOT NULL,
itemtype CHAR(1) NOT NULL,
itemcolor VARCHAR(10),

PRIMARY KEY(itemno));

CREATE TABLE lineitem (
lineno INTEGER,
lineqty INTEGER NOT NULL,
lineprice DECIMAL(7,2) NOT NULL,
saleno INTEGER,
itemno INTEGER,

PRIMARY KEY(lineno,saleno),
CONSTRAINT fk_has_sale FOREIGN KEY(saleno) REFERENCES sale(saleno),
CONSTRAINT fk_has_item FOREIGN KEY(itemno) REFERENCES item(itemno));

Exercise

A keen field hockey fan wants to keep
track of which countries won which
medals in the various summer Olympics
for both the men’s and women’s events

Design a data model
Create the database
Populate with data for the last two
Olympics

• http://en.wikipedia.org/wiki/Field_hockey_at
_the_Summer_Olympics

10

http://en.wikipedia.org/wiki/Field_hockey_at_the_Summer_Olympics

11

A three table join

Specify two matching conditions with the
associative table in both join conditions

SELECT * FROM sale JOIN lineitem
ON sale.saleno = lineitem.saleno
JOIN item ON item.itemno = lineitem.itemno;

12

A three table join

List the names of items, quantity, and value of items sold on January
16, 2011

SELECT itemname, lineqty, lineprice, lineqty*lineprice
AS total FROM sale JOIN lineitem

ON lineitem.saleno = sale.saleno
JOIN item ON item.itemno = lineitem.itemno

WHERE saledate = '2011-01-16';

itemname lineqty lineprice total

Pocket knife—Avon 1 0.00 0.00

Safari chair 50 36.00 1800.00

Hammock 50 40.50 2025.00

Tent—8 person 8 153.00 1224.00

Tent—2 person 1 60.00 60.00

13

EXISTS

Existential qualifier
Returns true or false
Returns true if the table contains at least one row
satisfying the specified condition

Report all clothing items (type “C”) for which a sale is recorded
SELECT itemname, itemcolor FROM item

WHERE itemtype = 'C'

AND EXISTS (SELECT * FROM lineitem
WHERE lineitem.itemno = item.itemno);

itemname itemcolor

Hat—Polar Explorer Red

Boots—snake proof Black

Pith helmet White

Stetson Black

14

lineno lineqty lineprice saleno itemno

1 1 4.5 1 2

1 1 25 2 6

2 1 20 2 16

3 1 25 2 19

4 1 2.25 2 2

1 1 500 3 4

2 1 2.25 3 2

1 1 500 4 4

2 1 65 4 9

3 1 60 4 13

4 1 75 4 14

5 1 10 4 3

6 1 2.25 4 2

1 50 36 5 10

2 50 40.5 5 11

3 8 153 5 12

4 1 60 5 13

5 1 0 5 2

itemno itemname itemtype itemcolor

1 Pocket knife—Nile E Brown

2 Pocket knife—Avon E Brown

3 Compass N —

4 Geopositioning system N —

5 Map measure N —

6 Hat—Polar Explorer C Red

7 Hat—Polar Explorer C White

8 Boots—snake proof C Green

9 Boots—snake proof C Black

10 Safari chair F Khaki

11 Hammock F Khaki

12 Tent—8 person F Khaki

13 Tent—2 person F Khaki

14 Safari cooking kit E —

15 Pith helmet C Khaki

16 Pith helmet C White

17 Map case N Brown

18 Sextant N —

19 Stetson C Black

20 Stetson C Brown

SELECT itemname,
itemcolor FROM item

WHERE itemtype = 'C’
AND EXISTS (SELECT *

FROM lineitem
WHERE lineitem.itemno

= item.itemno);

itemname itemcolor

Hat—Polar Explorer Red

Boots—snake proof Black

Pith helmet White

Stetson Black

15

NOT EXISTS

Returns true if the table contains no rows satisfying
the specified condition
Report all clothing items (type “C”) that have not been sold
SELECT itemname, itemcolor FROM item

WHERE itemtype = 'C'
AND NOT EXISTS
(SELECT * FROM lineitem
WHERE item.itemno = lineitem.itemno);

itemname itemcolor

Hat—Polar Explorer White

Boots—snake proof Green

Pith helmet Khaki

Stetson Brown

16

lineno lineqty lineprice saleno itemno

1 1 4.5 1 2

1 1 25 2 6

2 1 20 2 16

3 1 25 2 19

4 1 2.25 2 2

1 1 500 3 4

2 1 2.25 3 2

1 1 500 4 4

2 1 65 4 9

3 1 60 4 13

4 1 75 4 14

5 1 10 4 3

6 1 2.25 4 2

1 50 36 5 10

2 50 40.5 5 11

3 8 153 5 12

4 1 60 5 13

5 1 0 5 2

itemno itemname itemtype itemcolor

1 Pocket knife—Nile E Brown

2 Pocket knife—Avon E Brown

3 Compass N —

4 Geopositioning system N —

5 Map measure N —

6 Hat—Polar Explorer C Red

7 Hat—Polar Explorer C White

8 Boots—snake proof C Green

9 Boots—snake proof C Black

10 Safari chair F Khaki

11 Hammock F Khaki

12 Tent—8 person F Khaki

13 Tent—2 person F Khaki

14 Safari cooking kit E —

15 Pith helmet C Khaki

16 Pith helmet C White

17 Map case N Brown

18 Sextant N —

19 Stetson C Black

20 Stetson C Brown

SELECT itemname, itemcolor
FROM item

WHERE itemtype = 'C'
AND NOT EXISTS

(SELECT * FROM lineitem
WHERE item.itemno =

lineitem.itemno);

itemname itemcolor

Hat—Polar Explorer White

Boots—snake proof Green

Pith helmet Khaki

Stetson Brown

Exercise

Report all brown items that have been
sold
Report all brown items that have not
been sold

17

18

Divide

The universal qualifier
forall

Not directly mapped into SQL
Implement using NOT EXISTS

Find all items that have appeared in all sales
becomes

Find items such that there does not exist a sale in
which this item does not appear

19

Divide

Find the items that have appeared in all sales

SELECT itemname FROM item

WHERE NOT EXISTS
(SELECT * FROM sale

WHERE NOT EXISTS

(SELECT * FROM lineitem
WHERE lineitem.itemno = item.itemno
AND lineitem.saleno = sale.saleno));

itemname

Pocket knife—Thames See the book’s web site for a
detailed explanation of how
divide works (Support/SQL

Divide)

20

A template for divide

Find the target1 that have appeared in all sources

SELECT target1 FROM target

WHERE NOT EXISTS
(SELECT * FROM source

WHERE NOT EXISTS

(SELECT * FROM target-source
WHERE target-source.target# = target.target#
AND target-source.source# = source.source#));

21

Beyond the great divide

Find the items that have appeared in all sales
can be rephrased as

Find all the items for which the number of sales that include this item is
equal to the total number of sales.

SELECT item.itemno, item.itemname
FROM item JOIN lineitem
ON item.itemno = lineitem.itemno

GROUP BY item. itemno, item.itemname
HAVING COUNT(DISTINCT saleno)
= (SELECT COUNT(DISTINCT saleno) FROM sale);

First determine
the number of
sales in which
an item has
appeared

Second
compare the
number of
sales to the
total number
of sales

22

Set operations

UNION
Equivalent to OR

INTERSECT
Equivalent to AND

23

UNION

List all items that were sold on January 16, 2011, or are brown.

SELECT itemname FROM item JOIN lineitem
ON item.itemno = lineitem.itemno
JOIN sale ON lineitem.saleno = sale.saleno
WHERE saledate = '2011-01-16'

UNION
SELECT itemname FROM item WHERE itemcolor = 'Brown';

itemname

Hammock

Map case

Pocket knife—Avon

Pocket knife—Nile

Safari chair

Stetson

Tent—2 person

Tent—8 person

24

INTERSECT

List all items that were sold on January 16, 2011, and are brown.

SELECT itemname FROM item JOIN lineitem
ON item.itemno = lineitem.itemno
JOIN sale ON lineitem.saleno = sale.saleno
WHERE saledate = '2011-01-16'

INTERSECT
SELECT itemname FROM item WHERE itemcolor = 'Brown';

itemname

Pocket knife—Avon INTERSECT
not supported
by MySQL

25

Conclusion

Introduced
m:m relationship
Associative entity
Weak entity
EXISTS
Divide
Set operations

