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The Close on the Theory of Automata

We have laid the foundation for the theory of finite automata.
We can represent these machines physically with electronics!
Unfortunately, we still have some unfinished business:

1 How can we tell whether two REs define the same language?

2 How can we tell whether two FAs accept the same language?

3 How can we tell whether the language defined by an FA has
finitely many or infinitely many words in it (or any words at all)?

Definition
An e�ective solution to a problem that has a yes or no answer is
called a decision procedure.
A problem that has a decision procedure is called decidable.

We need to provide decision procedures for problems we need to decide
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Deciding Whether Two REs are Equivalent

Things to try:
• Generate words in lexicographical order (no mathematical guarantee)

• Interpret what regular expressions “mean” (hopeless / not rigorous)

• what else?

We have already developed algorithms necessary for deciding the
“equivalency problem” for FAs and therefore REs. We only need to
recognize how to apply them.

Given two languages, L1 and L2, we can produce any of the following:
L1
′ L2

′ L1 ∩ L2
′ L2 ∩ L1

′

We can produce an FA that accepts (L1 ∩ L2
′) + (L2 ∩ L1

′).

If L1 = L2, then this FA cannot accept any words
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Showing Equivalence – Method 1

1 Convert the FA into a regular expression
2 Delete all stars (*)
3 For each +, we throw away the right half and the +
4 When we have no more *’s or +’s we remove the parentheses
5 We now have a concatenation of a’s, b’s, and λ’s

Problem
We can’t actually convert the FA representing (L1 ∩ L2

′) + (L2 ∩ L1
′) to

a regular expression... but why?
• The last step when converting an RE to FA is “adding” together the

edges from an initial state to a final state.
• When an FA doesn’t accept anything, there will be no edges going

from the initial to final state.
• We have reached a dead end by one of three ways: (1) no final state,

(2) disconnected states, (3) unreachable final state from the start
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Showing Equivalence – Method 2

Examine the FA to see whether or not there is any path from initial to
accepting. If there is any path, then the machine must accept some
words. In a large FA with thousands of states, this may be impossible.

Try the following procedure:

1 Paint the start state blue

2 From each blue state, follow each edge that leads out of it and
paint the destination state blue, then delete the edge followed

3 Repeat (2) until no new state is painted blue, then stop

4 When the procedure has stopped, if any of the final states are
painted blue, then the machine accepts some words

At most, we will iterate through N times and remove at least N − 1
links (either all nodes are colored blue or we have already stopped)
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Showing Equivalence – Method 2

Theorem
Let F be an FA with N states. Then if F accepts any words at all, it
accepts some word with N or fewer le�ers.

Proof.

1 The shortest path from initial to accepting state (if any) cannot
contain a circuit – otherwise it would no longer be the shortest
path (cycles would occur otherwise)

2 If there is a path from initial to accepting then it can visit each
state at most one time

3 The path can then have at most N edges and the word that
generates it can have at most N le�ers.

�
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Showing Equivalence – Method 3

• Test all words fewer than N le�ers by running them on the FA.
• If the FA accepts none of them, then it accepts no words at all.
• There are a predictable number of words to test, and each word

takes a finite predictable time to run
• Therefore, this is an e�ective decision procedure

All three methods are e�ective – but which is the
most e�icient?

Example: r1 = a∗ r2 = λ + aa∗
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Equivalence Theorem

We have proven the following (on prior slides):

Theorem

There is an e�ective procedure to decide whether:

1 A given FA accepts any words

2 Two FAs are equivalent

3 Two regular expressions are equivalent

go us!
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Finiteness

Let us answer our last question of decidability – how can we tell
whether an FA or regular expression defines a finite language or an
infinite language
Regular expressions: if there is a closure of a non-empty set, then
the language is infinite.

Finite automata: convert to a regular expression? OR...

Theorem
Let F be an FA with N states. Then:

1 If F accepts a string w | N ≤ length(w) < 2N, then F accepts an
infinite language

2 If F accepts infinitely many words, then F accepts some word
w | N ≤ length(w) < 2N
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Finiteness

Proof.

1 A word is long enough to be pumped if it has more le�ers than
the FA has states. If there is some word w with N or more le�ers,
then we can split w into three parts w = xyz and show that xynz
includes infinitely many words.

2 F must accept a word so large that its path must contain at least
one circuit. Each circuit can contain at most N states. If we
bypass, or leave the circuit as soon as we can, we will visit less
than 2N le�ers. If we found a word less than size N , then we can
increase it by taking the first circuit and looping once.

�

9 / 14



Finiteness Example

1 2 3

4

5 6

78 9 10
There are two circuits:

2-3-4 5-6-7-8

If we had a path: 1-2-3-4-2-3-5-6-7-8-5-6-7-8-5-6-7-9-10

and bypassed 5-6-7-8, we would be le� with: 1-2-3-4-2-3-5-6-7-9-10

That path contains 11 states.

Procedure: We could test all strings between length N and 2N – if
any are accepted, then the language is infinite.
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Finiteness
Theorem
There is an e�ective procedure to decide whether a given FA accepts a
finite or an infinite language

Proof.
If the machine has N states and the alphabet has m le�ers, then in
total there are

mN +mN+1 +mN+2 + · · · + +m2N−1

di�erent input strings in the range

N ≤ length of string < 2N

We can test them all by running them on the machine. If any are
accepted, then the language is infinite. If none are accepted, the
language is finite. �
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Homework 6c

Show the following FAs are equivalent:

i

x0 x1

ab

b

a

y0 y1 y2a

b

ba

a

b

ii

x0 x1

x2 x3

a

b

a

b
a

b

a, b

y0 y1 y2

a b

a

b
a, b
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Homework 6c

Using the method of intersecting each machine with the complement
of each other, determine whether two machines accept the same
language (or not)

i

x0 x1

x2

a

b

a

aa

b

y0 y1

y2

a

b

a

aa
b

ii x0 x1

x2

y0 y1

y2

a

b

b

a

b

a

a

b
a

b

a

b
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Homework 6c

Do the following FAs accept a finite or infinite language? Justify.
i

x0 x1

x2

b

a

b

a

a,
b

ii

x0 x1

x2 x3

b

a

a

bb

a
b

a
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