CSCI 340: Computational Models

Decidability

Chapter 11




The Close on the Theory of Automata
_

We have laid the foundation for the theory of finite automata.
We can represent these machines physically with electronics!
Unfortunately, we still have some unfinished business:

©® How can we tell whether two REs define the same language?
® How can we tell whether two FAs accept the same language?

® How can we tell whether the language defined by an FA has
finitely many or infinitely many words in it (or any words at all)?

Definition

An effective solution to a problem that has a yes or no answer is
called a decision procedure.
A problem that has a decision procedure is called decidable.

We need to provide decision procedures for problems we need to decide

1/14



Deciding Whether Two REs are Equivalent
__
Things to try:
® Generate words in lexicographical order (no mathematical guarantee)
* Interpret what regular expressions “mean” (hopeless / not rigorous)

® what else?

2/14



Deciding Whether Two REs are Equivalent

Things to try:
® Generate words in Iexicographical order (no mathematical guarantee)
* Interpret what regular expressions “mean” (hopeless / not rigorous)
® what else?

We have already developed algorithms necessary for deciding the
“equivalency problem” for FAs and therefore REs. We only need to
recognize how to apply them.

Given two languages, L; and L,, we can produce any of the following:

Ly L, LinLy LNl

We can produce an FA that accepts (L1 N Ly") + (L N Ly").

If Ly = Ly, then this FA cannot accept any words

14



Showing Equivalence — Method 1
__

@ Convert the FA into a regular expression

® Delete all stars ()

® For each +, we throw away the right half and the +

® When we have no more *’s or +’s we remove the parentheses
® We now have a concatenation of a’s, b’s, and A’s

3/14



Showing Equivalence — Method 1
__

@ Convert the FA into a regular expression

® Delete all stars ()

® For each +, we throw away the right half and the +

® When we have no more *’s or +’s we remove the parentheses
® We now have a concatenation of a’s, b’s, and A’s

Problem

We can’t actually convert the FA representing (L1 N Ly") + (L, N Ly") to
a regular expression... but why?

® The last step when converting an RE to FA is “adding” together the
edges from an initial state to a final state.

® When an FA doesn’t accept anything, there will be no edges going
from the initial to final state.

® We have reached a dead end by one of three ways: (1) no final state,
(2) disconnected states, (3) unreachable final state from the start

3/14



Showing Equivalence — Method 2
_

Examine the FA to see whether or not there is any path from initial to
accepting. If there is any path, then the machine must accept some
words. In a large FA with thousands of states, this may be impossible.

Try the following procedure:
© Paint the start state blue

® From each blue state, follow each edge that leads out of it and
paint the destination state blue, then delete the edge followed

® Repeat (2) until no new state is painted blue, then stop
® When the procedure has stopped, if any of the final states are
painted blue, then the machine accepts some words
At most, we will iterate through N times and remove at least N — 1
links (either all nodes are colored blue or we have already stopped)



Showing Equivalence — Method 2
__

Let F be an FA with N states. Then if F accepts any words at all, it
accepts some word with N or fewer letters.

Proof.

@ The shortest path from initial to accepting state (if any) cannot
contain a circuit — otherwise it would no longer be the shortest
path (cycles would occur otherwise)

@ If there is a path from initial to accepting then it can visit each
state at most one time

® The path can then have at most N edges and the word that
generates it can have at most N letters.

5/14



Showing Equivalence — Method 3
__

Test all words fewer than N letters by running them on the FA.

If the FA accepts none of them, then it accepts no words at all.

There are a predictable number of words to test, and each word
takes a finite predictable time to run

Therefore, this is an effective decision procedure

All three methods are effective — but which is the
most efficient?

Example: rp=a" r,=A+aa"

6/14



Equivalence Theorem
__

We have proven the following (on prior slides):

There is an effective procedure to decide whether:

© A given FA accepts any words
® Two FAs are equivalent

© Two regular expressions are equivalent

go us!

7/14



Finiteness

_
Let us answer our last question of decidability — how can we tell
whether an FA or regular expression defines a finite language or an
infinite language
Regular expressions: if there is a closure of a non-empty set, then
the language is infinite.

Finite automata: convert to a regular expression? OR...

Let F be an FA with N states. Then:

© IfF accepts a string w | N < length(w) < 2N, then F accepts an
infinite language

® If F accepts infinitely many words, then F accepts some word
w | N < length(w) < 2N

8/14



Finiteness
|

® A word is long enough to be pumped if it has more letters than
the FA has states. If there is some word w with N or more letters,
then we can split w into three parts w = xyz and show that xy"z
includes infinitely many words.

® F must accept a word so large that its path must contain at least
one circuit. Each circuit can contain at most N states. If we
bypass, or leave the circuit as soon as we can, we will visit less
than 2N letters. If we found a word less than size N, then we can
increase it by taking the first circuit and looping once.

9/14



Finiteness Example

~O-G-0-0-0
el O SO RO O

If we had a path: 1-2-3-4-2-3-5-6-7-8-5-6-7-8-5-6-7-9-10
and bypassed 5-6-7-8, we would be left with: 1-2-3-4-2-3-5-6-7-9-10
That path contains 11 states.

Procedure: We could test all strings between length N and 2N - if
any are accepted, then the language is infinite.

10/14



Finiteness

ol Theoen

There is an effective procedure to decide whether a given FA accepts a
finite or an infinite language

If the machine has N states and the alphabet has m letters, then in
total there are

mN_l_mN+1 +mN+2+“_++m2N—1

different input strings in the range
N < length of string < 2N

We can test them all by running them on the machine. If any are
accepted, then the language is infinite. If none are accepted, the
language is finite. O

11/14



Homework 6c¢
|

Show the following FAs are equivalent:

>b Eos0Z0@
o

12/14



Homework 6c¢
|

Using the method of intersecting each machine with the complement
of each other, determine whether two machines accept the same

language (or not)

'»44 20

13/14



Homework 6c¢
|

Do the following FAs accept a finite or infinite language? Justify.

14/14



