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Nonregular Languages

Definition
A language that cannot be defined by a regular expression is called a
nonregular language.

By Kleene’s Theorem, a nonregular language can also not be accepted
by any Finite Automaton (DFA or NFA) or by any Transition Graph.

Example

L = {λ ab aabb aaabbb aaaabbbb . . .}

or alternatively defined as:

L = {anbn}
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The Pumping Lemma

Lemma
Let L be any regular language that has infinitely many words. Then
there exists some three strings x , y , and z (where y is not the null
string) such that all strings of the form

xynz for n = 1 2 3 . . .
are words in L.

Proof (start...)

If L is a regular language, then there is an FA that accepts exactly the
words in L and no more. This FA will have a finite number of states
but infinitely many words. This means there is some cycle.

Let w be some word in L that has more le�ers in it than there are
states in the machine. When this word generates a path through the
machine, we must revisit a state that it has been to before.
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Continuing the Proof of the Pumping Lemma (2/3)

Let us break up the word w into three parts:

1 Let x be all the le�ers of w starting at the beginning that lead up
to the first state that is revisited. x may be the null string.

2 Let y denote the substring of w that travels around the “circuit”
which loops. y cannot be the null string.

3 Let z be the rest of the le�ers in w that starts a�er y . This z
could be null. The path for z could also possibly loop around the
y-circuit (it’s arbitrary).

Clearly, from this definition given above,

w = xyz

and w is accepted by this machine.
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Continuing the Proof of the Pumping Lemma (3/3)

Q1: What is the path through this machine of the input string xyz?

x
y

z

Q2: What is the path through this machine of the input string xyyz?

x
y

z

Note: All languages L must be of the form w = xynz for this to be
“accepted”. If they were not of this form, then the FA would not have
such a trace.
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Example

q0 q1 q2

q3 q4 q5

a

b

a

b

aba, b a

b a

b

w = bbbababa

w = b baa baba
x y z

What would happen when w = xyyz = b bba bba baba?
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Show L is Non-regular with the Pumping Lemma

Suppose for a moment that we never talked about L = {anbn}

The pumping lemma states there must be strings x ,y , and z such that
all words of the form xynz are in L. Is this possible?

aaa . . . aaaabbbb . . . bbb

• If y is made entirely of a’s then when we pump to xyyz , the
word will have more a’s than b’s.
• If y is made entirely of b’s then when we pump to xyyz , the

word will have more b’s than a’s.
• y must be made up of some number of a’s followed by some

number of b’s. This means xyyz would have two copies of the
substring ab. Our original language prohibits this. Therefore,
xyyz cannot be a word in L. And L is not regular.
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Another Example of Showing L is Non-regular

Once we have shown {anbn} is non-regular, we can show that the
language EQUAL (all words with the same total number of a’s and
b’s) is also non-regular.
• The language {anbn} is the intersection of all words defined by

the regular expression a∗b∗ and the language EQUAL.

{anbn} = a∗b∗ ∩ EQUAL

• If EQUAL were a regular language, then {anbn} would be the
intersection of two regular language (as discussed in Chapter 9).
Additionally, it would need to be regular itself (which it is not).
• Therefore, EQUAL cannot be regular since {anbn} is non-regular.
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Yet Another Non-regular Language

Consider the language L = anban = {b aba aabaa aaabaaa . . .}.
If this language were regular, then we know the Pumping Lemma
would have to hold true.
• xyz and xyyz would both need to be in L
• Observation 1: If the y string contained the b, then xyyz would

contain two b’s. This is not possible – xyyz is not part of L
• Observation 2: If the y string contained all a’s then the b in the

middle is either on the x or z side. In either case, xyyz would
increase the number of a’s either before or a�er the b
• Conclusion 1: xyyz does not have b in the middle and is not of

the form anban

• Conclusion 2: L cannot be pumped and is therefore not regular
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Additional Examples (on Chalkboard)

1 anbnabn+1

2 PALINDROME

3 PRIME = {an where p is a prime}

Plus a Stronger Theorem

Let L be an infinite language accepted by a finite automaton with N
states. Then for all words w in L that have more than N le�ers, there
are strings x , y , and z , where y is not null and length(x) + length(y)
does not exceed N such that

w = xyz

and all strings of the form

xynz( for n = 1 2 3 . . .)

are in L �
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Limitations of the pumping lemma

The pumping lemma is negative in its application. It can only be used
to show that certain languages are not regular.
• Let’s consider some FA – each state (final or non-final) can be

thought of as creating a society of a certain class of strings.
• If there exists a string formed by some path leading to a state, it

is part of that state’s society.
• If string x and string y are in the same society, then for all other

strings z , either xz and yz are both accepted or rejected

Theorem (The Myhill-Nerode Theorem)

Given a language L, we shall say two string x and y are in the same class
if for all possible strings z, xz and yz are both in L or both are not

1 The language L divides the set of all strings into separate classes

2 If L is regular, the number of classes L creates is finite.

3 If the number of classes L creates is finite, then L is regular
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Proving the Myhill-Nerode Theorem

Proof by contradiction – Part 1.

• Split classes in an intentionally bad way: Suppose any two
students at college are in the same class if the have taken a
course together
• A and B may have taken history together, B and C may have

taken geography together, but A and C never took a class
together. Then A, B, and C are not all in the same class.
• If AZ and BZ are always in L and BZ (or not) and CZ are always

in L (or not), then A, B, and C must all be in the same class
• If S is in a class with X and S is also in a class with Y , then by

reasoning above X and Y must be in the same class.
• Therefore, S cannot be in two di�erent classes. No string is in

two di�erent classes and every string must be in some class.
• Therefore, every string is in exactly one class �
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Proving the Myhill-Nerode Theorem

Proof of Part 2.

• If L is regular, then there is some FA that accepts L.
• Its finite number of states create a finite division of all strings

into a finite number of societies.
• The problem is that two di�erent states may define societies

that are actually the same class

q0

q1

q2

q3

a

b

b
a

b
a

a, b

• Society “class” of q1 and q2: any word in them when followed by
a string z will be accepted IFF z contains an a
• Since the societies are in the same class, and there are finitely

many societies, there must be a finite number of classes. � 12 / 17



Proving the Myhill-Nerode Theorem

Proof by (pseudo-)construction – Part 3.

Let the finitely many classes be C1,C2, . . .Cn where C1 is the class
containing λ. We will transform these classes into an FA by showing
how to draw the edges between (and assign start and final states)

1 The start state must be C1 because of λ

2 If a class contains one word of L then w ∈ L ∀w ∈ C. Let
s ∈ L,w ∈ L | w ∈ Ck . When z = λ,wλ ∈ L ∧ sλ ∈ L (or not).
Label all states that are subsets of L as final states.

3 Repeat the following for all classes Cm:
If x ∈ Cm ∧ y ∈ Cm, then ∀z (xz ∈ L ∧ yz ∈ L).
Let Ca = xa ∀x ∈ Cm. Draw an a-edge from Cm to Ca.
Let Cb = xb ∀x ∈ Cm. Draw an b-edge from Cm to Cb.

4 Once outgoing edges are drawn for all classes, we have an FA

�
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Examples using Myhill-Nerode Theorem

All words that end in a
• C1 – all strings that end in a (final)
• C2 – all strings that don’t end in a (start)

C2 C1

b a a

b

All words that contain a double a
• C1 – strings without aa that end in a
• C2 – strings without aa that end in b or λ
• C3 – strings with aa

C2 C1 C3

b a a, b

b
a
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Examples using Myhill-Nerode Theorem

Showing languages are regular
• EVEN-EVEN
• two or more b’s
• start and end with the same le�er

Showing languages are non-regular
• anbn

• anban

• EQUAL
• PALINDROME
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• anbn We only need to observe that a, aa, aaa, . . . are all in

di�erent classes because there’s exactly bm that will match am

• anban The strings ab, aab, aaab, . . . are all in di�erent classes
because we need a matching bam for each class
• EQUAL Because for each of the strings a, aa, aaa, aaaa, . . . some

z = bm will be alone in EQUAL
• PALINDROME ab, aab, aaab, . . . are all in di�erent classes. For

each, one value of z = am will create a PALINDROME when
added but to no other
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Bonus: Prefixes

Definition
If R and Q are languages, then the language “the prefixes of Q in R,”
denoted by the symbolism Pref(Q in R) is the set of all strings of
le�ers that can be concatenated to the front of some word in Q to
produce some word in R

Pref (Q in R) = all strings p such that q ∈ Q,w ∈ R | pq = w

Theorem
If R is regular and Q is any language whatsoever, then the language

P = Pref(Q in R)

is regular
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Homework 6b

1 Use the pumping lemma, show each are non-regular
i anbn+1

ii anbnan

2 Using Myhill-Nerode theorem, show each are non-regular
i EVEN-PALINDROME (all PALINDROMEs with even length)
ii SQUARE (an2

| n ≥ 1)

3 Let us define PARENTHESES to be the set of all algebraic
expressions where everything but parentheses have been deleted
e.g. {λ () (()) ()() ((())) (())() ()(()) ()()() . . .}

1 Show its non-regular using Myhill-Nerode
2 Show the pumping lemma can’t prove that it’s non-regular
3 If we convert ( to a and ) to b, show that PARENTHESES becomes

a subset of EQUAL in which each word has the property that
when read from le�-to-right, there are never more b’s than a’s
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