1. Find CFGs that generate the following regular languages. Assume $\Sigma = \{a, b\}$

 (a) All strings that end in b and have an even number of b's in total
 (b) All strings without the substring aaa

2. For the following CFG, find a regular expression that defines the language. Also describe the language.

 $S \rightarrow aS \mid bX \mid a$
 $X \rightarrow aX \mid bY \mid bZ \mid a$
 $Y \rightarrow aY \mid a$
 $Z \rightarrow aZ \mid bW$
 $W \rightarrow aW \mid a$

3. Starting with the alphabet $\Sigma = \{a, b, (,) + *, \}$, find a CFG that generates all regular expressions. Is this language regular?

4. Find a regular form of the following CFG:

 $S \rightarrow XY$
 $X \rightarrow aX \mid Xa \mid a$
 $Y \rightarrow bY \mid b$

5. Remove all Λ-productions from the following CFG:

 $S \rightarrow XaX \mid bX$
 $X \rightarrow XaX \mid XbX \mid \Lambda$

6. Remove all unit productions from the following CFG:

 $S \rightarrow aX \mid Yb$
 $X \rightarrow S$
 $Y \rightarrow bY \mid b$

7. Convert the following CFG to CNF

 $E \rightarrow E + E$
 $E \rightarrow E * E$
 $E \rightarrow (E)$
 $E \rightarrow 7$
8. Create a PDA for EVEN-EVEN (even number of a’s and b’s in any order)

9. Build a deterministic PDA that accepts the language $a^n b^{n+1}$ (Assume $n > 0$)

10. Consider the following PDA (Assume $\Sigma = \{a, b\}$

(a) Trace the following words on the PDA (show STACK and TAPE and STATE)

- $aaabbb$
- $aaaabb$

(b) Find a CFG that defines the language accepted by the PDA

(c) Describe the language in English