CSCI 340 – Homework 8

Dr. Schwartz

- 1. Find CFGs that generate the following regular languages. Assume $\Sigma = \{a \ b\}$
 - (a) All strings that end in *b* and have an even number of *b*'s in total
 - (b) All strings without the substring aaa
- 2. For the following CFG, find a regular expression that defines the language. Also describe the language.

 $S \rightarrow aS \mid bX \mid a$ $X \to aX \mid bY \mid bZ \mid a$ $Y \rightarrow aY \mid a$ $Z \rightarrow aZ \mid bW$ $W \rightarrow aW \mid a$

- 3. Starting with the alphabet $\Sigma = \{a \ b \ () + *\}$, find a CFG that generates all regular expressions. Is this language regular?
- 4. Find a regular form of the following CFG:

$$S \to XY$$
$$X \to aX \mid Xa \mid a$$
$$Y \to bY \mid b$$

- 5. Remove all Λ -productions from the following CFG:
 - $S \rightarrow XaX \mid bX$
 - $X \rightarrow XaX \mid XbX \mid \Lambda$
- 6. Remove all unit productions from the following CFG:
 - $S \rightarrow aX \mid Yb$ $X \rightarrow S$
 - $Y \to bY \mid b$
- 7. Convert the following CFG to CNF
 - $E \rightarrow E + E$ $E \rightarrow E * E$ $E \rightarrow (E)$ $E \rightarrow 7$

- 8. Create a PDA for EVEN-EVEN (even number of a's and b's in any order)
- 9. Build a deterministic PDA that accepts the language $a^n b^{n+1}$ (Assume n > 0)
- 10. Consider the following PDA (Assume $\Sigma = \{a \ b\}$

- (a) Trace the following words on the PDA (show STACK and TAPE and STATE) *aaabbb* and *aaaabb*
- (b) Find a CFG that defines the language accepted by the PDA
- (c) Describe the language in English