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Qualitative Predictors
¨ So far have assumed that all variables in linear 

regression model are quantitative.
¨ How to deal with qualitative variables?



Credit Dataset
¨ Response:

¤ Balance (individual’s average credit card debt)

¨ Quantitative Predictors:
¤ Age (years)
¤ Cards (number of credit cards)
¤ Education (years of education)
¤ Income (in thousands of dollars)
¤ Limit (credit limit)
¤ Rating (credit rating)

¨ Qualitative Predictors:
¤ Gender {Male, Female}
¤ Student {Yes, No}
¤ Married {Yes, No}
¤ Ethnicity {Caucasian, African American, Asian}



pairs(~Balance+Age+Cards+Education+Income+Limit+Rating, data=Credit, cex=.05)



Qualitative Predictors: Two Levels
¨ Levels (sometimes called factors): possible values of 

discrete variable
¨ Solution: create a dummy variable (or indicator) 

that takes on two possible numerical values
¨ Credit dataset, Gender variable: {Male, Female}
¨ Create new dummy variable:

xi =
1     if ith person is female
0     if ith person is male   
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Qualitative Predictors: Two Levels

xi =
1     if ith person is female
0     if ith person is male   
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… for now assuming that Gender is the only predictor in model …

yi = β0 +β1xi +εi =
β0 +β1 +εi       if ith person is female
β0 +εi           if ith person is male
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Simple Linear Regression Model
• Estimate coefficients B0, B1 Term zeros out for males



Qualitative Predictors: Two Levels

¨ Interpretation:
¤ B0: average credit card balance among males
¤ B0 + B1: average credit card balance among females
¤ B1: average difference in credit card balance between 

females and males

yi = β0 +β1xi +εi =
β0 +β1 +εi       if ith person is female
β0 +εi           if ith person is male
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Qualitative Predictors: Two Levels
¨ Interpretation:

¤ B0: average credit card balance among males
¤ B0 + B1: average credit card balance among females
¤ B1: average difference in credit card balance between females and males

Balance = 509.80 + 19.73 * xi

yi = β0 +β1xi +εi =
β0 +β1 +εi       if ith person is female
β0 +εi           if ith person is male

!
"
#

$#

• Average credit card debt for males is estimated 
to be $509.80.

• Females are estimated to carry $19.73 in 
additional debt, for a total of: 

$509.80+$19.73=$529.53



> summary(lm.fit)

Call:
lm(formula = Credit.Balance ~ Gender_Female, data = Credit.2)

Residuals:
Min      1Q  Median      3Q     Max 

-529.54 -455.35  -60.17  334.71 1489.20 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)     509.80      33.13  15.389   <2e-16 ***
Gender_Female 19.73      46.05   0.429    0.669    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Qualitative Predictors: Two Levels

Balance = 509.80 + 19.73 * xi

yi = β0 +β1xi +εi =
β0 +β1 +εi       if ith person is female
β0 +εi           if ith person is male
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• p-value for the dummy 
variable is very high, 
indicating that there is no 
statistical difference in 
average credit card 
balance between the 
genders.



Qualitative Predictors: Two Levels
¨ Decision to code females as 1 and males as 0 is 

arbitrary.
¤ It does alter the interpretation of the coefficients

¨ What would happen if we coded males as 1 and 
females as 0?



Qualitative Predictors: Two Levels
¨ Interpretation:

¤ B0: average credit card balance among females
¤ B0 + B1: average credit card balance among males
¤ B1: average difference in credit card balance between females and males

yi = β0 +β1xi +εi =
β0 +β1 +εi      if ith person is male
β0 +εi         if ith person is female

!
"
#

$#

Balance = 529.54 - 19.73 * xi

• Average credit card debt for females is 
estimated to be $529.54.

• Males are estimated to carry $19.73 in less 
debt, for a total of: 

$529.54-$19.73=$509.80

Same exact model!



Qualitative Predictors: Two Levels
¨ Interpretation:

¤ B0: overall average credit card balance (ignoring gender)
¤ B1: amount that females are above the average, and males are below 

the average

yi = β0 +β1xi +εi =
β0 +β1 +εi      if ith person is female
β0 −β1 +εi         if ith person is male
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Balance = 519.67 + 9.865 * xi

• Average credit card debt, ignoring gender is 
$519.67.

• The average difference between males and 
females is:

$9.865 * 2 = $19.73

Same exact model! 
• It doesn’t matter which coding scheme is used, as 

long as coefficients are correctly interpreted.

xi =
1     if ith person is female
−1     if ith person is male   
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Qualitative Predictors: More than Two Levels
¨ Single dummy variable cannot represent all possible 

values for qualitative predictors with more than two levels
¨ Solution: create additional dummy variables
¨ For Ethnicity variable:

xi1 =
1    if ith person is Asian

0   if ith person is not Asian   
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xi2 =
1    if ith person is Caucasian

0   if ith person is not Caucasian   
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Simple linear model, ignoring all 
other predictors….

yi = β0 +β1xi1 +β2xi2 +εi =
β0 +β1 +εi      if ith person is Asian

β0 +β2 +εi      if ith person is Caucasian
β0 +εi      if ith person is African American
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Qualitative Predictors: More than Two Levels
¨ Interpretation:

¤ B0: average credit card balance for African Americans
¤ B1: difference in average balance between Asians and African Americans
¤ B2: difference in average balance between Caucasians and African 

Americans

xi1 =
1    if ith person is Asian

0   if ith person is not Asian   
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xi2 =
1    if ith person is Caucasian

0   if ith person is not Caucasian   
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yi = β0 +β1xi1 +β2xi2 +εi =
β0 +β1 +εi      if ith person is Asian

β0 +β2 +εi      if ith person is Caucasian
β0 +εi      if ith person is African American
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Always one fewer dummy variable than number of levels.



Qualitative Predictors: Two Levels
¨ Interpretation:

¤ B0: average credit card balance for African Americans
¤ B1: difference in average balance between Asians and African Americans
¤ B2: difference in average balance between Caucasians and African Americans

Balance = 531.00 – 18.69* xi1 – 12.50* xi2

• Estimated balance for African Americans is 
$531.00

• Asian category will have $18.69 in less debt 
than African American category

• Caucasian category will have $12.50 in less 
debt than African American category

yi = β0 +β1xi1 +β2xi2 +εi =
β0 +β1 +εi      if ith person is Asian

β0 +β2 +εi      if ith person is Caucasian
β0 +εi      if ith person is African American
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xi1 =
1    if ith person is Asian

0   if ith person is not Asian   
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xi2 =

1    if ith person is Caucasian
0   if ith person is not Caucasian   
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Once again, arbitrary coding scheme.



Qualitative Predictors: Two Levels
Balance = 531.00 – 18.69* xi1 – 12.50* xi2

• p-value for both dummy variables is very high, 
indicating that there is no statistical difference in 
average credit card balance between the 
ethnicity categories.

yi = β0 +β1xi1 +β2xi2 +εi =
β0 +β1 +εi      if ith person is Asian

β0 +β2 +εi      if ith person is Caucasian
β0 +εi      if ith person is African American
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xi1 =
1    if ith person is Asian

0   if ith person is not Asian   
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xi2 =

1    if ith person is Caucasian
0   if ith person is not Caucasian   
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Call:
lm(formula = Credit.Balance ~ Ethnicity_Asian + Ethnicity_Caucasian, 

data = Credit.5)

Residuals:
Min      1Q  Median      3Q     Max 

-531.00 -457.08  -63.25  339.25 1480.50 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)           531.00      46.32  11.464   <2e-16 ***
Ethnicity_Asian -18.69      65.02  -0.287    0.774    
Ethnicity_Caucasian -12.50      56.68  -0.221    0.826    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



Multiple Quantitative and Qualitative 
Predictors

¨ Not a problem
¤ Use as many dummy variables as needed

¨ R creates dummy variables automatically for the 
qualitative predictors



In conclusion…
¨ Pros of Linear Regression Model: 

¤ Provides nice interpretable results
¤ Works well on many real-world problems

¨ Cons of Linear Regression Model:
¤ Assumes linear relationship between response and predictors:

n Change in the response Y due to a one-unit change in Xi is constant
¤ Assumes additive relationship (unless you add interaction terms)

n Effect of changes in a predictor Xi on response Y is independent of 
the values of the other predictors



Logistic Regression
¨ In standard linear regression, the response is a 

continuous variable:

¨ In logistic regression, the response is qualitative
y = f (x1, x2,.., xp )+ε = β0 +B1x1 +β2x2 +...+βpxp +ε



Can a Qualitative Response be 
Converted into a Quantitative Response?

¨ Iris Dataset:
¤ Qualitative Response: {Setosa, Virginica, Versicolor}

¨ Encode a quantitative response:

¨ Then fit a linear regression model using least 
squares

Y =
1    if Setosa

2    if Virginica
3    if Versicolor
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Can a Qualitative Response be 
Converted into a Quantitative Response?

¨ What’s the problem?
¨ Encoding implies an ordering of 

the Iris classes
¤ Difference between Setosa and 

Virginica is same as difference 
between Viginica and Versicolor

¤ Difference between Setosa and 
Versicolor is greatest

Y =
1    if Setosa

2    if Virginica
3    if Versicolor
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Can a Qualitative Response be 
Converted into a Quantitative Response?

¨ Two different encodings
¨ Two different linear models will be produced
¨ Would lead to different predictions for the same test 

instance

Y =
1    if Setosa

2    if Virginica
3    if Versicolor
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Y =
1    if Versicolor

2    if Setosa
3    if Virginica
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Holds for qualitative values without a natural ordering



Can a Qualitative Response be 
Converted into a Quantitative Response?

¨ Another example:
¤ Response: {Mild, Moderate, Severe}

Y =
1    if Mild

2    if Moderate
3    if Severe
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# Encoding is fine if the gap between Mild and 

Moderate, is about the same as Moderate to 
Severe.



Can a Qualitative Response be 
Converted into a Quantitative Response?

¨ In general, no natural way to convert a qualitative
response with more than two levels into a 
quantitative response.

¨ Binary response:

Y = 0   if Default on Loan
1    if No Default on Loan
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• Predict Default if yi < 0.5
• Else predict NoDefault

• Predicted values may lie outside range of [0,1]
• Predicted values are not probabilities



Logistic Model
¨ Logistic Regression models the probability that Y

belongs to a particular category
¨ For Default dataset:

¤ Probability of Default given Balance:

¤ Values of p(balance) will range between 0 and 1.
Pr(default =Yes | balance)



Logistic Model
¨ p(balance) > 0.5

¤ Predict Default=Yes

¨ … or for a conservative company
¤ Lower the threshold and predict Default=Yes if 

p(balance) > 0.1



Linear Model vs. Logistic Model
p(X) = β0 +β1X

x <- -50:50
B0 <- 1.5
B1 <- .250

p(X) = eβ0+β1X

1+ eβ0+β1X

linear <- plot(B0 + B1*x) logistic <- plot((exp(B0 + B1*x))/(1+exp(B0 + B1*x)))



Linear Model vs. Logistic Model
¨ With linear model, can always predict p(X) < 0 for 

some values of X and p(X) > 1 for others
¤ (unless X has limited range)

¨ Logistic Function: outputs between 0 and 1 for all 
values of X
¤ (many functions meet this criteria, logistic regression 

uses the logistic function on next slide)



Logistic Function

p(X) = eβ0+β1X

1+ eβ0+β1X

… algebra … p(X)
1− p(X)

= eβ0+β1X

… algebra …

log p(X)
1− p(X)
"

#
$

%

&
'= β0 +β1X

odds

log-odds (logit)

“Logit is linear in X.”

• Values of the odds close to 0 
indicate very low probabilities.
• On average, 1 in 5 people 

with an odds of 1/4 will 
default.

• High odds indicate very high 
probabilities.

0.2
1− 0.2

= 1
4, so p(default) = 0.2



Interpretation
¨ Linear:

¤ “B1 gives the average change in Y with a one-unit increase in 
X.”

¤ “Relationship is constant (straight line).”
¨ Logistic:

¤ “Increasing X by one unit changes the log odds by B1, 
(multiplies the odds by eB1).”

¤ “Relationship is not a straight line. The amount that Y changes 
depends on the current value of X.”



Estimating the Regression Coefficients
¨ Usually the method of maximum likelihood is used 

(instead of least squares)
¤ Reasoning is beyond the scope of this course

¨ R calculates “best” coefficients automatically for us



“Default” Dataset
¨ Simulated toy dataset
¨ 10,000 observations
¨ 4 variables

¤ Default: {Yes, No} – whether customer defaulted on their 
debt

¤ Student: {Yes, No} – whether customer is a student
¤ Balance: average CC balance
¤ Income: customer income



“Default” dataset
“Since B1=0.0055, an increase in balance is associated 
with an increase in the probability of default.”

A one-unit increase in balance is associated with an increase in the log odds of default
by 0.0055 units.

Call:
glm(formula = default ~ balance, family = binomial, data = Default)

Coefficients:
Estimate Std. Error z value Pr(>|z|)    

(Intercept) -1.065e+01  3.612e-01  -29.49   <2e-16 ***
balance      5.499e-03  2.204e-04   24.95   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Since p-value of Balance
coefficient is tiny, it is 
statistically significant 
that there is an 
association between 
Balance and the 
probability of Default.



“Default” dataset
¨ Making Predictions:

p̂(1000) = eβ̂0+β̂1X

1+ eβ̂0+β̂1X
=

e−10.6513+0.0055×1000

1+ e−10.6513+0.0055×1000
= 0.00576 = 0.576%

p̂(2000) = eβ̂0+β̂1X

1+ eβ̂0+β̂1X
=

e−10.6513+0.0055×2000

1+ e−10.6513+0.0055×2000
= 0.586 = 58.6%



“Default” dataset
¨ Do students have a higher chance of default?



Multiple Logistic Regression
¨ How to prediction a binary response using multiple 

predictors?
¨ Can generalize the logistic function to p predictors:

p(X) = eβ0+β1X+...+βpX

1+ eβ0+β1X+...+βpX
log p(X)

1− p(X)
"

#
$

%

&
'= β0 +β1X1 +...+βpXp

Can use maximum likelihood to estimate the p+1 coefficients.



“Default” dataset
¨ Full model using all three predictor variables:

¤ RESPONSE
n Default: {Yes, No} – whether customer defaulted on their debt

¤ PREDICTORS
n (DUMMY VARIABLE USED) Student: {Yes, No} – whether customer 

is a student
n Balance: average CC balance
n Income: customer income



Full Model

> glm.fit <- glm(default ~ balance+income+student, data=Default, 
family=binomial)
> summary(glm.fit)

Call:
glm(formula = default ~ balance + income + student, family = binomial, 

data = Default)

Coefficients:
Estimate Std. Error z value Pr(>|z|)    

(Intercept) -1.087e+01  4.923e-01 -22.080  < 2e-16 ***
balance      5.737e-03  2.319e-04  24.738  < 2e-16 ***
income       3.033e-06  8.203e-06   0.370  0.71152    
studentYes -6.468e-01  2.363e-01  -2.738  0.00619 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

• p-values associated with student
and balance are very small, 
indicating that each of these 
variables is associated with the 
probability of Default.

• Coefficient for the dummy variable 
student is negative, indicating that 
students are less likely to default 
than nonstudents.



Model Comparison

Call:
glm(formula = default ~ balance + income + student, family = binomial, data = Default

Coefficients:
Estimate Std. Error z value Pr(>|z|)    

(Intercept) -1.087e+01  4.923e-01 -22.080  < 2e-16 ***
balance      5.737e-03  2.319e-04  24.738  < 2e-16 ***
income 3.033e-06  8.203e-06   0.370  0.71152
studentYes -6.468e-01  2.363e-01  -2.738  0.00619 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Call:
glm(formula = default ~ student, family = binomial, data = Default)

Coefficients:
Estimate Std. Error z value Pr(>|z|)    

(Intercept) -3.50413    0.07071  -49.55  < 2e-16 ***
studentYes 0.40489    0.11502    3.52 0.000431 ***

Conflicting Results?



Conflicting Results?
¨ How is it possible for student status to be associated 

with an increase in probability of default when it 
was the only predictor, and now a decrease in 
probability of default once income is also factored 
in?



Interpretation

Red = student
Blue = not a student

Default rate of students/non-
students, averaged over all 
values of balance



Interpretation

Red = student
Blue = not a student

Default rate of students/non-
students, as a function of 
balance value

A student is less likely to default than a 
non-student, for a fixed value of 
balance.



Interpretation

Variables Student and 
Balance are correlated.
• Students tend to hold 

higher levels of debt, 
which is associated with a 
higher probability of 
default.



• A student is riskier for default than a non-student if no information about the student’s CC 
balance is available.

• But, that student is less risky than a non-student with the same CC balance.



Interpretation is Key
¨ In linear regression, results obtained using one 

predictor may be vastly different compared to 
when multiple predictors are used
¤ Especially when there is correlation among the 

predictors



Logistic Regression: >2 Response Classes

¨ Yes, Two-class logistic regression models have 
multiple-class extensions.

¨ Yes, they are implemented in R. 
¨ However, we’ll use other data mining and statistical 

techniques instead.
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