

CSCI 366 (Database and Web Dev)

Dr. Schwartz

Lab 7: PHP and Forms

(Adapted from Web Programming Step by Step)

For this assignment, you will create a simple multi-page "online dating" site that processes HTML forms

with PHP. Online dating has become mainstream with popular sites such as eHarmony, Match.com,

OkCupid, Chemistry, and Plenty of Fish. Your task for this assignment is to write HTML and PHP code

for a fictional online dating site for desperate single geeks, called NerdLuv. Work on your VM, in a

directory called Lab7. You will be creating the following files and should submit them to AutoLab in a

single .zip file (do not include images and provided files):

• signup.php, a page with a form that the user can use to sign up for a new account

• signup-submit.php, the page that receives data submitted by signup.php and signs up the new user

• matches.php, a page with a form for existing users to log in and check their dating matches

• matches-submit.php, the page that receives data submitted by matches.php and show's the user's

matches

There are some provided files in the handout from AutoLab. The first is a complete version of the site's

front page, index.php. This front page simply links to your other pages. The other complete provided

files are top.html and bottom.html, which contain common header/footer HTML code that you should

include in your other pages. There is also a complete CSS file nerdluv.css with all of the page styles.

You should link to this CSS file from all of your pages and use its styles in your code. You should be

able to fully style all pages using the styles in nerdluv.css only. There is also a .zip file of all the images

you will need and a .zip file of example screenshots.

Index Page (index.php) and Overall Site Navigation:

The provided index.php page (above) has a header logo, links to signup.php and matches.php, and footer

notes/images. You do not need to modify this file, but you should put it in the Lab7 directory on your

VM with your other files. You can also put all of the images in the images.zip file directly in your Lab7

directory. Use relative addressing for all files, assuming that they are in your current directory!

The "Sign Up" link leads to signup.php (left below), and "Check matches" to matches.php (right below):

When submitted, the Signup page looks like this:

When submitted, the View Matches form looks like

this:

The details about each page's contents and behavior are described on the following pages. Screenshots

in this document are from Windows in Firefox, which may differ from your system.

Sign-Up Page (signup.php):

The signup.php page has a header logo, a form to create

a new account, and footer notes/images. You must write

the HTML code for the form. The form contains the

following labeled fields:

 Name: A 16-character box for the user to type a

name.

 Gender: Radio buttons for the user to select a gender

of Male or Female. When the user clicks the text next

to a radio button, that button should become

checked. Initially Female is checked.

 Age: A 6-letter-wide text input box for the user to

type his/her age in years. The box should allow

typing up to 2 characters.

 Personality type: A 6-character-wide text box

allowing the user to type a Keirsey personality type,

such as ISTJ or ENFP. The box should let the user

type up to 4 characters. The label has a link to

http://www.humanmetrics.com/cgi-win/JTypes2.asp .

 Favorite OS: A drop-down select box allowing the user to select a favorite operating system. The

choices are Windows, Mac OS X, and Linux. Initially "Windows" is selected.

 Seeking age: Two 6-character-wide text boxes for the user to specify the range of acceptable ages of

partners. The box should allow the user to type up to 2 characters in each box. Initially both are

empty and have placeholder text of "min" and "max" respectively. When the user starts typing, this

placeholder text disappears.

 Sign Up: When pressed, submits the form for processing as described in the next section.

http://www.humanmetrics.com/cgi-win/JTypes2.asp

Submitting the Sign-Up Form (signup-submit.php):

When the user presses "Sign Up," the form should

submit its data as a POST to signup-submit.php. You

must use the parameter names specified below. Your

PHP code should read the data from the query

parameters and store it as described below. The

resulting page has the usual header and footer and text

thanking the user. The text "log in to see your matches!"

links to matches.php.

Parameters:

• name

• age

• gender

• minAge

• maxAge

• os

• ptype

Your site's user data is stored in a file singles.txt, placed in the same folder as your PHP files. An initial

version of this file is provided in the handout. The file contains data records as lines in exactly the

following format, with the user's name, gender (M or F), age, personality type, operating system, and

min/max seeking age, separated by commas:

Angry Video Game Nerd,M,29,ISTJ,Mac OS X,1,99
Lara Croft,F,23,ENTP,Linux,18,30
Seven of Nine,F,40,ISTJ,Windows,12,50

Your signup-submit.php code should create a line representing the new user's information and add it to

the end of the file. See the PHP file_put_contents function in book Chapter 5 or the lecture slides.

In all pages, assume valid data for the file's contents and form submissions. For example, no fields will

be left blank or contain illegal characters (such as a comma). No user will resubmit data for a name

already in the system.

View Matches Page (matches.php):

The matches.php page has a header logo, a form to log

in and view the user's matches, and footer notes/images.

You must write the HTML for the form. The form has

one field:

 Name: A label and 16-letter box for the user to type

a name. Initially empty. Submit to the server as a

query parameter name.

When the user presses "View My Matches," the form

submits its data as a GET request to matches-

submit.php. The name of the query parameter sent

should be name, and its value should be the encoded text

typed by the user. For example, when the user views

matches for Rosie O Donnell, the URL should be:

matches-submit.php?name=Rosie+O+Donnell

Viewing Matches (matches-submit.php):

When viewing matches for a given user, matches-

submit.php should show a central area displaying each

match. Write PHP code that reads the name from the

page's name query parameter and finds which other

singles match the given user. The existing singles to

match against are records found in the file singles.txt as

described previously. You may assume that the name

parameter is passed and will be found in the file.

Below the banner should be a heading of "Matches for

(name)". Below this is a list of singles that match the

user. A "match" is a person with all of the following

qualities:

 The opposite gender of the given user (Please

understand that this is not a moral, political or any

other kind of “values” statement – this is just to keep

our coding simpler for now!);

 Of compatible ages; that is, each person is between

the other's minimum and maximum ages, inclusive;

 Has the same favorite operating system as this

user;

 Shares at least one personality type letter in

common at the same index in each string.

For example, ISTP and ESFP have 2 in common (S, P).

As you find each match, output the HTML to display the matches, in the order they were originally found

in the file. Each match should have css class match and have the image user.jpg, the person's name, and

an unordered list (ul) with their gender, age, personality type, and OS, as shown above. The labels for

each value must be in a strong tag.

Styling:

The styles you need are already given to you in nerdluv.css, but you still need to use proper tags and

class attributes to make sure they are applied. Be mindful of the styles on forms and form controls. Do

not change nerdluv.css.

There are several screenshots of the various pages included in the handout from AutoLab (in

screenshots.zip). Make sure that your form has the same width, colors, fonts, borders, etc. as in these

examples. If you choose the right tags to represent your form, it should match. Make sure that form

fields line up in columns by using a strong tag or column class so that each text label floats to the left

and is 11em wide.

In matches-submit.php, the matches are displayed in a div with class of match. First is a paragraph

containing an image of the match, shown with a width of 150px, and the person's name to the right. The

paragraph has a light blue background color. The section with the match's gender, age, etc. must be

represented as an unordered list (ul).

Uploading and Testing:

Upload all files to your vm to test them; include index.php , top.html, and bottom.html even if you won't

modify them. You must change permissions on singles.txt so that PHP can write to it. Below are images

from FileZilla, showing the necessary permissions. You can use the chmod command, cyberduck, etc. to

do this as well, but you need to enable Group Write. Here is an explanation of Linux file permissions:

https://www.linux.com/learn/tutorials/309527-understanding-linux-file-permissions

Suggested Development Strategy and Hints:

 Based on index.php, write matches.php and matches-submit.php to work properly for existing

users.

 Write an initial version that outputs every person, even ones who aren't compatible

"matches." This way you can debug your file I/O, styles, etc. Then add checks like gender,

age, and OS. Focus on the PHP code and behavior first, as opposed to style details (CSS is

not an emphasis of this assignment).

 Write signup.php and signup-submit.php. If you finish the match page you'll understand forms,

making the signup page easier. This is tough; there are more parameters to manage, and you must

write to a file.

Use debug print and print_r statements to track down bugs. For example, you can print_r($_GET);

or $_POST to see the query parameters submitted. Use Firebug, Inspect Element and also View Source

to find HTML output problems.

Recall that form controls must have name attributes. Sometimes you must also add a value to affect how

data is sent.

Implementation and Grading:

Your HTML output for all pages must pass the W3C HTML validator. (Not the PHP source code itself,

but the HTML output it generates.) Do not use HTML tables. Since we are using HTML forms, choose

proper form controls and set their attributes accordingly. Properly choose between GET and POST

requests for sending data.

Your PHP code should not cause errors or warnings. Minimize use of the global keyword, use

indentation/spacing, and avoid lines over 100 characters. Use material from class and the first six book

chapters.

Some HTML sections are shared redundantly between your PHP pages, found in the provided files

top.html and bottom.html. Include these files as appropriate in your other pages using the PHP include

function.

A major grading focus is redundancy. Use functions, parameters/return, included files/code, loops,

variables, etc. to avoid redundancy. If you have PHP code you want to share between multiple pages,

https://www.linux.com/learn/tutorials/309527-understanding-linux-file-permissions

you may turn in an optional file named common.php containing this code. You can include your

common.php in your other pages.

For full credit, reduce the amount of large chunks of PHP code in the middle of HTML code. Replace

such chunks with functions declared at the top or bottom of your file. You will also lose points if you

use PHP print or echo statements. Insert dynamic content into the page using PHP expression blocks,

<?= ... ?> , as taught in class.

Another grading focus is PHP commenting. Put a descriptive comment header at the top of each file,

each function, and each section of PHP code.

Format your HTML and PHP code similarly to the examples from class. Properly use whitespace and

indentation. Do not place more than one block element on a line or begin a block element past the 100th

character.

Part of your grade will also come from successfully uploading your files to the web. You should place

your files into your public web space on your VM called Lab7, so that it is possible to navigate to your

page in the browser.

Copyright © Marty Stepp / Jessica Miller, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

	Submitting the Sign-Up Form (signup-submit.php):
	Viewing Matches (matches-submit.php):
	Styling:
	Suggested Development Strategy and Hints:
	Implementation and Grading:

