FEATURE SUBSETS
High Dimensionality

- ... can be bad
- Datasets can have a large number of features
 - Example: stock prices (time series)
 - Each stock is individual instance
 - Features/variables are closing price on given day
 - Imagine 30 years worth of closing prices (30 x 365)
Why is it a Problem?

- Many times data mining algorithms work better if there is not an overwhelming number of attributes
 - The “dimensionality” is lower
- “The Curse of Dimensionality”
- As dimensionality increases (more features), the data becomes increasingly sparse in the “feature space” that it occupies.
 - Not enough data objects for the number of features that are present
 - Reduced classification model accuracy

BAD: $p > n$
$p = \# \text{ of features}$
$n = \# \text{ of instances}$
Other Benefits to Dimensionality Reduction

1. More understandable models
 - Learned model may involve fewer attributes
2. Better visualizations
 - Fewer attributes = less variables to plot
3. Computational time
 - Fewer attributes = quicker model learning?
4. Elimination of irrelevant features
Techniques for Dimensionality Reduction

1. Linear Algebra Techniques
 - Automatic approaches
 - Project data from high-dimensional space into a lower-dimensional space
 1. Principal Components Analysis (PCA)
 2. Singular Value Decomposition (SVD)
 - Not necessarily interested in “losing information”; rather eliminate some of the sparsity
Techniques for Dimensionality Reduction

2. Feature Construction

- *Example:* combining two separate features (\# of full baths, \# of half baths) into one feature (“total baths”)

- *Example:* combining features (mass) and (volume) into one feature (density), where density = mass / volume
Techniques for Dimensionality Reduction

3. Feature Subset Selection

- Reducing number of features by only using a subset of features
 - How many should be in the subset?
- Losing information if we only consider a subset of features?
 - Redundant features
 - Example: (1) purchase price and (2) sales tax
 - Irrelevant features
 - Example: student id numbers
- By eliminating unnecessary features, we hope for a better model.
Eliminating Redundant and Irrelevant Features

1. Manually via Data Analyst
 - Intuition about problem domain

2. Systematic Approach
 - Try all possible combinations of feature subsets?
 - See which combination results in best model
 - For n features, there are 2^n possible combinations of subsets
 - Infeasible to try each of them
Three Systematic Approaches

1. Embedded Approaches
2. Filter Approaches
3. Wrapper Approaches
Embedded Approaches

- Algorithm specific

- Occurs naturally as part of the data mining algorithm
 - *Example*: present in decision tree induction
 - Only certain subset of features are used in final decision tree
 - *Example*: not present in linear regression
 - Fitted model contained coefficient for each predictor variable
Filter Approaches

- Features are selected **before** the data mining algorithm is run
- Filter approach is **independent** of the data mining task
- **Example**: (trying to eliminate redundant features)
 1. Look at pairwise correlation between variables
 - Pick subset of variables that each have low pairwise correlation
 2. Then use only that subset in Linear Regression model.
Data mining algorithm is a “black box” for finding best subset of features
- Tries different combinations of subsets
- Typically will never enumerate all 2^n possible combinations
 - Will search a feature space that is much smaller
- Final model uses the specific subset that evaluates the best
Top-Down Wrapper

- Assuming \(n \) number of features…
- Start with no attributes
 1. Train classifier \(n \) times, each time with a different feature
 - Each classifier only has a single predictor
 - See which of the \(n \) classifiers performs the best
 2. Add to the best classifier. Recursively use remaining attributes to find which attribute improves performance the most
 - Keep including best attribute
- Stopping criterion: Stop if no improvement to classifier performance, or classifier performance is less than some threshold
Assuming *n* number of features...

- Start with all *n* attributes in model
- Create *n* models, each with a different predictor omitted.
 - Each classifier has *n*-1 predictors
 - See which of the *n* classifiers affects performance the least
 - Throw that attribute out

- Recursively find the attribute that affects performance the least

- **Stopping criterion**: Stop if classifier performance begins to degrade
Other Wrappers

- Bi-Directional
 - Combining Top-Down and Bottom-Up
- Greedy Search with Backtracking
 - *(if you’re familiar with AI)*
- ...

...
Adjusted R^2 Statistic

- Recall the R^2 statistic that we use in Linear Regression:
 - Measured the proportion of variance explained by the model
 - Always a value between 0 and 1
 - Higher is better

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

$$TSS = \sum (y_i - \bar{y})^2$$

$$RSS = \sum (y_i - \hat{y}_i)^2$$

Always increases as more variables are added to the model.
Adjusted R^2 Statistic

- In contrast to R^2, Adjusted R^2 penalizes for unnecessary variables in the model.
- $d = \text{number of predictors}$
- $n = \text{number of instances}$

$$Adjusted\ R^2 = 1 - \frac{RSS}{(n - d - 1)} \times \frac{TSS}{(n - 1)}$$

$TSS = \sum (y_i - \bar{y})^2$

$RSS = \sum (y_i - \hat{y}_i)^2$
References

- *Introduction to Data Mining, 1st* edition, Tam et al.
- *Discovering Knowledge in Data, 2nd* edition, Larose
- *An Introduction to Statistical Learning, 1st* edition, James et al.