slides originally by Dr. Richard Burns, modified by Dr. Stephanie Schwartz

FEATURE SUBSETS

CSCI 452: Data Mining

High Dimensionality

- □ ... can be bad
- Datasets can have a large number of features
 - Example: stock prices (time series)
 - Each stock is individual instance
 - Features/variables are closing price on given day
 - Imagine 30 years worth of closing prices (30 x 365)

Why is it a Problem?

BAD: p > n, p = # of features n = # of instances

- Many times data mining algorithms work better if there is not an overwhelming number of attributes
 - The "dimensionality" is lower
- "The Curse of Dimensionality"
- As dimensionality increases (more features), the data becomes increasingly sparse in the "feature space" that it occupies.
 - Not enough data objects for the number of features that are present
 - Reduced classification model accuracy

Other Benefits to Dimensionality Reduction

- 1. More understandable models
 - Learned model may involve fewer attributes
- 2. Better visualizations
 - Fewer attributes = less variables to plot
- 3. Computational time
 - Fewer attributes = quicker model learning?
- 4. Elimination of irrelevant features

Techniques for Dimensionality Reduction

- 1. Linear Algebra Techniques
 - Automatic approaches
 - Project data from high-dimensional space into a lowerdimensional space
 - 1. Principal Components Analysis (PCA)
 - 2. Singular Value Decomposition (SVD)
 - Not necessarily interested in "losing information"; rather eliminate some of the sparsity

Techniques for Dimensionality Reduction

- 2. Feature Construction
 - Example: combining two separate features (# of full baths, # of half baths) into one feature ("total baths")
 - Example: combining features (mass) and (volume) into one feature (density), where density = mass / volume

Techniques for Dimensionality Reduction

- 3. Feature Subset Selection
 - Reducing number of features by only using <u>a subset of features</u>
 - How many should be in the subset?
 - Losing information if we only consider a subset of features?
 - Redundant features
 - *Example:* (1) purchase price and (2) sales tax
 - Irrelevant features
 - *Example:* student id numbers
 - By eliminating unnecessary features, we hope for a better model.

Eliminating Redundant and Irrelevant Features

- 1. Manually via Data Analyst
 - Intuition about problem domain
- 2. Systematic Approach
 - Try all possible combinations of feature subsets?
 - See which combination results in best model
 - For n features, there are 2ⁿ possible combinations of subsets
 - Infeasible to try each of them

Three Systematic Approaches

- 1. Embedded Approaches
- 2. Filter Approaches
- 3. Wrapper Approaches

Embedded Approaches

- Algorithm specific
- Occurs naturally as part of the data mining algorithm
 - **Example:** present in decision tree induction
 - Only certain subset of features are used in final decision tree
 - **Example:** not present in linear regression
 - Fitted model contained coefficient for each predictor variable

Filter Approaches

- Features are selected <u>before</u> the data mining algorithm is run
- Filter approach is <u>independent</u> of the data mining task
 Example: (trying to eliminate redundant features)
 - L'ample. (in ying to eminiate redondam rediores)
 - 1. Look at pairwise correlation between variables
 - Pick subset of variables that each have low pairwise correlation
 - 2. Then use only that subset in Linear Regression model.

Wrapper Approaches

- Data mining algorithm is a "black box" for finding best subset of features
 - Tries different combinations of subsets
 - Typically will never enumerate all 2ⁿ possible combinations
 - Will search a feature space that is much smaller
 - Final model uses the specific subset that evaluates the best

Top-Down Wrapper

- □ Assuming n number of features...
- Start with no attributes
- 1. Train classifier *n* times, each time with a different feature
 - Each classifier only has a single predictor
 - See which of the *n* classifiers <u>performs the best</u>
- 2. Add to the best classifier. Recursively use remaining attributes to find which attribute that improves performance the most

Keep including best attribute

Stopping criterion: Stop if no improvement to classifier performance, or classifier performance is less than some threshold

Bottom-Up Wrapper

- □ Assuming n number of features...
- □ Start with all *n* attributes in model
- Create *n* models, each with a different predictor omitted.
 - Each classifier has n-1 predictors
 - See which of the n classifiers <u>affects performance the least</u>
 - Throw that attribute out
- Recursively find the attribute that affects performance the least
- Stopping criterion: Stop if classifier performance begins to degrade

Other Wrappers

- Bi-Directional
 - Combining Top-Down and Bottom-Up
- Greedy Search with Backtracking
 - (if you're familiar with AI)
- •••

Always <u>increases</u> as more variables are added to the model.

Adjusted R² Statistic

- Recall the R² statistic that we use in Linear Regression:
 - Measured the proportion of variance explained by the model
 - Always a value between 0 and 1
 - Higher is better

$$R^{2} = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

$$TSS = \sum (y_i - \overline{y})^2$$
$$RSS = \sum (y_i - \hat{y}_i)^2$$

Adjusted R² Statistic

- In contrast to R², Adjusted R² penalizes for unnecessary variables in the model.
- \Box d = number of predictors
- \square n = number of instances

Adjusted
$$R^2 = 1 - \frac{\frac{RSS}{(n-d-1)}}{\frac{TSS}{(n-1)}}$$

$$TSS = \sum (y_i - \overline{y})^2$$
$$RSS = \sum (y_i - \hat{y}_i)^2$$

References

Introduction to Data Mining, 1st edition, Tam et al.
 Discovering Knowledge in Data, 2nd edition, Larose
 An Introduction to Statistical Learning, 1st edition, James et al.