
CSCI 330 (Programming Languages)

Dr. Schwartz

Review Sheet for Exam 3

This is intended as a guideline for studying for the first exam… but only as a guideline! I wouldn’t

have covered something if I didn’t think it was important. If you are wondering about a topic and

you don’t see it here, ask me!

Sample Types of Questions

• Short answer, multiple choice and true/false, fill-in-the-blank

• Problem solving (for example)

o Drawing the stack/activation records for various programs

o Showing how various scoping schemes work -- static and dynamic (deep and

shallow), nested subprograms – chap 10

o Shallow binding, deep binding, ad hoc binding with subprogram parameters

o Parameter passing modes

Chapter 8 (Statement-Level Control Structures)

• all algorithms represented by flowcharts can be coded with only two-way selection and

pretest logical loops

• Two-way selection statements: design issues

o Form and type of control expression (arithmetic? Boolean?)

o Clause form – how is it delimited? Always compound?

o Nesting selectors

• Multiple-way selection statements: design issues

o Form and type of control (integer? String? Enumeration?)

o Is just one selectable segment executed?

o How are case values specified?

o Do all values need to be represented?

• Iterative Statements

o Counter-controlled loops: type and scope of loop variable, can loop variable be

changed in body? Are loop variables evaluated once or once every iteration?

o Logically-controlled loops: pre-test or post-test? Can you transfer out of more than

one loop? Can you have multiple entry points?

• Iteration based on data structures

• Unconditional branching

• Guarded commands

Chapter 9 (Subprograms)

• Subprogram fundamentals: definitions, etc.

• Actual/formal parameter correspondence (positional, keyword), default values

• Local referencing environments (stack-dynamic, static local variables)

• Parameter passing modes

• Type checking parameters

• Multi-dimensional arrays as parameters

• Subprogram names as parameters (type-checking, referencing environment)

• Overloaded subprograms, generic subprograms

• Specific design issues for functions

Chapter 10 (Implementing Subprograms)

• General semantics of calls and returns

• Implementing “simple” subprograms – activation records, etc.

• Adding stack-dynamic local variables

o dynamic link

o environment pointer

o call chain

o local offset

• Nested subprograms:

o Static scoping – static chain

o Dynamic scoping: deep access vs shallow access

Chapter 14 (Exception Handling)

• Alternatives to built-in exception handling (how can developers handle errors in languages

without exception handling?)

• Advantages to built-in exception handling

• Design issues for exception handling

• Options for continuing after an exception

• What happens with unhandled exceptions

Testing

• Overall process – phases of testing, when test plans should be written

• White box vs black box testing

• Types of testing: Unit testing, integration testing, system testing, regression testing,

performance testing, acceptance testing

• Static vs dynamic testing

OCaml

Understanding code with an emphasis on Chapter 14 (Exception Handling)

• Alternatives to built-in exception handling (how can developers handle errors in languages

without exception handling?)

• Advantages to built-in exception handling

• Design issues for exception handling

• Options for continuing after an exception

• What happens with unhandled exceptions

• folding

	Review Sheet for Exam 3

