
Testing

As	Paul	Ehrlich	(scientist,	Nobel	laureate)		puts	it	–
"To	err	is	human,	but	to	really	foul	things	up	you	

need	a	computer.”
Note:	Modified	by	Stephanie	Schwartz

Testing	in	the	21st	Century
• Software	defines	behavior

– network	routers,	finance,	switching	networks,	other	infrastructure

• Today’s	software	market	:
– is	much	bigger
– is	more	competitive
– has	more	users

• Embedded	Control	Applications
– airplanes,	air	traffic	control
– spaceships
– watches
– ovens
– remote	controllers

• Agile	processes	put	increased	pressure	on	testers
– Programmers	must	unit	test	– with	no	training,	education	or	
tools	!

– Tests	are	key	to	functional	requirements	– but	who	builds	those	
tests	?

2

Costly	Software	Failures

Introduction to Software Testing (Ch 1) © Ammann & Offutt 3

■ NIST	report,	“The	Economic	Impacts	of	Inadequate	
Infrastructure	for	Software	Testing”	(2002)
– Inadequate	software	testing	costs	the	US	alone	between	$22	and	
$59	billion	annually

– Better	approaches	could	cut	this	amount	in	half

■ Huge	losses	due	to	web	application	failures
– Financial	services	:	$6.5	million	per	hour	(just	in	USA!)
– Credit	card	sales	applications	:	$2.4	million	per	hour	(in	USA)

■ In	Dec	2006,	Amazon.com’s BOGO	offer	turned	into	a	
double	discount

■ 2007	:	Symantec	says	that	most	security	vulnerabilities	are	
due	to	faulty	software

World-wide	monetary	loss	due	to poor	software	is	staggering

Spectacular	Software	Failures

4

• Other	Major	failures:		Ariane 5	explosion,	Mars	Polar	
Lander,	Intel’s	Pentium	FDIV	bug,	Heathrow	Terminal	5	
Opening

• Poor	testing	of	safety-critical	software	can	cost	lives	:
• THERAC-25	radiation	machine:		3	dead

Ariane 5:
exception-handling
bug : forced self
destruct on maiden
flight (64-bit to 16-bit
conversion: about
370 million $ lost)

We	need	our	software	to	bedependable
Testing	is	one way	to	assess	dependability

• NASA’s	Mars	Lander:	September	1999,	crashed	due	to	a	units	integration	
fault

• Patriot	Missile	failure:	During		the	Gulf	War,	an	American	Patriot	Missile	
battery	in	Saudi	Arabia,	failed	to	track	and	intercept	an	incoming	Iraqi	Scud	
missile.	The	Scud	struck	an	American	Army	barracks,	killing	28	soldiers	and	
injuring	around	100	other	people.	The	General	Accounting	office	reported	on	
the	cause	of	the	failure.	It	turns	out	that	the	cause	was	an	inaccurate	
calculation	due	to	computer	arithmetic	errors.	

• Toyota	brakes	:		Dozens	 dead,	thousands	of	crashes

Northeast	Blackout	of	2003

5

Affected 10 million
people in Ontario,

Canada

Affected 40 million
people in 8 US

states

Financial losses of
$6 Billion USD

508 generating
units and 256

power plants shut
down

The alarm system in the energy management system failed due
to a software error and operators were not informed of the power

overload in the system

Testing	in	the	21st	Century
• More	safety	critical,	real-time	software
• Embedded	software	is	ubiquitous	…	check	your	pockets
• Enterprise	applications	means	bigger	programs,	more	
users

• Security	is	now	all	about	software	faults
– Secure	software	is	reliable	software

• The	web	offers	a	huge	deployment	platform
– Very	competitive	and	very	available	to	more	users
– Web	apps	are	distributed
– Web	apps	must	be	highly	reliable

6

7

Planning	for	Quality

• Testing	is	an	integral	part	of	quality	control	in	
software	development

• However,	quality	cannot	be	“tested	in”
• Quality	must	be	built	into	the	entire	development	

process	

8

Verification	and	Validation
• Validation	is	oriented	to	prevention (Are	we	building	the	

right	product?)	
• Verification	is	oriented	to	detection (Did	we	build	the	

product	right?)
• Both	verification	and	validation	are	need	to	ensure	high	

quality	results
• Independent	verification	and	validation	(IV&V)	is	the	

“gold	standard”
– Verification	and	validation	done	by	a	unit	not	involved	in	the	

development
– Expensive	to	implement,	hence	not	done	in	all	companies

9

Validation	Techniques
• Reviews	and	meetings	to	evaluate	documents,	plans,	

requirements,	specifications,	and	even	code

– Walkthroughs
– Inspections	(usually	a	more	formalized	
walkthrough)

• Audit	standards	and	processes

10

Verification	Techniques
• Unit	testing
• Integration	testing
• System	testing
• Regression	testing
• Performance	(load)	testing
• Acceptance	testing

11

Cost of Testing

• In	the	real-world,	testing	is	the	principle	post-
design	activity

• Restricting	early	testing	usually	increases	cost
• Extensive	hardware-software	integration	requires	
more	testing

Companies spend at least half of their development
budget on testing,

12

Approach

• Written	test	objectives	and	requirements	must	
be	documented

• What	are	your	planned	coverage	levels?
• How	much	testing	is	enough?

If you don’t know why you’re conducting each
test, it won’t be very helpful

13

When	to	Start

• What	fact	is	each	test	trying	to	verify?

• Requirements	definition	teams	need	testers!

If you don’t start planning for each test when the
functional requirements are formed, you’ll never know
why you’re conducting the test

14

Cost	of	Not Testing

• Not testing	is	even	more	expensive

• Planning	for	testing	after	development	is	
prohibitively	expensive

• A	test	station	for	circuit	boards	costs	half	a	million	
dollars	…

• Software	test	tools	cost	less	than	$10,000	!!!

Deliverable Description

Test Approach Explains the objectives and scope of the test;
Documents entry/exit criteria and key dates

Test Scenarios Provides high-level descriptions of functionality to be
tested

Test Cases Detailed	procedure	that	fully	tests	a	feature	or	an	aspect	
of	a	feature.

Test Conditions and Expected Results Describes all items and results that must be covered
to fulfill each Test Scenarios

Test Cycle Control Sheet Groups test scripts into logical categories (or cycles);
documents when and by whom each cycle will be
executed.

Test Scripts Provides step-by-step instructions and detailed
results for a test executor to follow during test
execution

The	Five	Key	Deliverables	of	Test	Planning

© 2011 Pearson Education,
Inc. Publishing as Prentice
Hall

16 Chapter 13

Software	Application	Testing

• A	master	test	plan	is	developed	during	the	
analysis	phase.

• During	the	design	phase,	unit,	system	and	
integration	test	plans	are	developed.

• The	actual	testing	is	done	during	implementation.
• Test	plans	provide	improved	communication	
among	all	parties	involved	in	testing.

© 2011 Pearson Education,
Inc. Publishing as Prentice
Hall

Different	Types	of	Testing	Techniques

• Static	or	dynamic	techniques
– Static	testing	means	that	the	code	being	tested	is	not	
executed.

– Dynamic	testing	involves	execution	of	the	code.

• Test	is	automated	or	manual
– Automated	means	computer	conducts	the	test.
– Manual	means	that	people	complete	the	test.

17 Chapter 13

© 2011 Pearson Education,
Inc. Publishing as Prentice
Hall

Different	Types	of	Tests

• Inspection:	a	testing	technique	in	which	
participants	examine	program	code	for	predictable	
language-specific	errors

• Walkthrough:	a	peer	group	review	of	any	product	
created	during	the	systems	development	process,	
including	code

• Desk	checking:	a	testing	technique	in	which	the	
program	code	is	sequentially	executed	manually	by	
the	reviewer

18 Chapter 13

© 2011 Pearson Education,
Inc. Publishing as Prentice
Hall

Different	Types	of	Tests	(Cont.)

• Unit	testing:	each	module	is	tested	alone	in	an	
attempt	to	discover	any	errors	in	its	code

• Integration	testing:	the	process	of	bringing	
together	all	of	the	modules	that	a	program	
comprises	for	testing	purposes
– Modules	are	typically	integrated	in	a	top-down	
incremental	fashion.

19 Chapter 13

© 2011 Pearson Education,
Inc. Publishing as Prentice
Hall

Different	Types	of	Tests	(Cont.)

• Regression	testing:	verifies	that	software	which	
was	previously	developed	and	tested	still	
performs	the	same	way	after	it	was	changed	or	
interfaced	with	other	software.	Changes	may	
include	software	enhancements,	patches,	or	
configuration	changes

• System	testing:	the	bringing	together	of	all	of	the	
programs	that	a	system	comprises	for	testing	
purposes
– Programs	are	typically	integrated	in	a	top-down,	
incremental	fashion.

20 Chapter 13

Different	Types	of	Tests	(Cont.)

• Performance	testing: determine	how	a	system	
performs	in	terms	of	responsiveness	and	
stability	under	a	particular	workload

• Acceptance	Testing:	testing	by	the	end-users

© 2011 Pearson Education,
Inc. Publishing as Prentice
Hall

The	Testing	Process

• The	purpose	of	testing	is	to	confirm	that	the	
system	satisfies	the	requirements.

• Good	testing	techniques	should	reveal	errors
• Testing	must	be	planned.
• Test	case	is	a	specific	scenario	of	transactions,	
queries	or	navigation	paths.

22 Chapter 13

© 2011 Pearson Education,
Inc. Publishing as Prentice
Hall

23 Chapter 13

The	Testing	Process	(Cont.)

• Test	cases	represent	either:
– Typical	system	use
– Critical	system	use,	or
– Abnormal	system	use.	

• Test	cases	and	results	should	be	
thoroughly	documented	so	they	can	be	
repeated	for	each	revision	of	an	
application.

© 2011 Pearson Education,
Inc. Publishing as Prentice
Hall

Automated	Testing

• Improves	testing	quality
• Reduce	testing	time	up	to	80%
• Functions:

– Create	recorded	data	entry	and	user	action	scripts
– Compare	test	results	between	test	cases
– Simulate	high-volume	for	stress-testing

24 Chapter 13

25

Testing	Strategy
• Testing	should	begin	“in	the	small”	– finding	and	correcting	

errors	is	much	easier	if	done	near	the	source
• Move	from	the	“small”	to	the	“large”
• Typical	sequence

– Unit	testing
– Integration	testing
– System	testing
– Acceptance	Testing

• Performance	and	Regression	testing	are	done	at	various	
points	when	appropriate

26

Software	Testing	Objectives
• Test	suites	are	created	and	evaluated	with	the	goal	of	

providing	as	much	coverage	as	is	feasible/practical
• Test	cases	should	be	carefully	chosen	to:

– Test	for	the	presence	of	all	required	functionality
– Have	high	probability	of	finding	as	yet	undiscovered	errors
– Test	areas	of	the	program	where	errors	would	have	the	most	

serious	consequences
– Test	for	probable	attempted	misuse	(deliberate	or	

unintentional)	of	the	program

• It	is	impossible	to	test	everything	in	a	software	system

27

Exercise
Consider	a	program	that	contains	3	if	…	then	…else statements		

1. How many different program states could possible arise
from just these statements during execution of the
program?

2. Answer the same question for a program with 20 if … then
… else statements.

3. What are the implications of these results for testing?

2^3		=	8
2^20	=	1048576

28

Test	Scenario	&	Case	Design
• We	should	design	test	plans	that	have	the	
highest	likelihood	of	finding	the	most	errors	
with	limited	time	and	effort.

• A	systematic	approach	should	be	adopted	to	
minimize	wasted	effort	and	ensure	coverage	
as	complete	as	possible	given	the	testing	
resources	available.

© 2011 Pearson Education,
Inc. Publishing as Prentice
Hall

Developing	Test	Scenarios
• A	Test	Scenario	is	a	business	requirement	to	be	tested
• A	Scenario	is	any	functionality	that	can	be	tested.	
• For	a	Flight	Reservation	Application	a	few	scenarios	
would	be	

• 1)	Check	the	Login	Functionality	
• 2)	Check	that	a	New	Order	can	be	created	
• 3)	Check	that	an	existing	Order	can	be	opened	
• 4)	Check	that	a	user	can	FAX	an	order	
• 5)	Check	that	the	information	displayed	in	the	HELP	
section	is	correct	

29 Chapter 13

Test	Cases	con’t
• Consider	the	Test	scenario	Check	Login	Functionality	
• There	many	possible	test	cases	like	

– Check	response	on	entering	valid	Agent	Name	&	Password	,
– Check	response	on	entering	invalid	Agent	Name	&	Password	,
– Check	response	when	Agent	Name	is	Empty	&	Login	Button	is	
pressed,	and	many	more	

• Test	scenarios	are	rather	vague	and	cover	a	wide	range	of	
possibilities.	 Testing	is	all	about	being	very	specific.

• Hence	we	need	Test	Cases	
• Consider	the	test	case	,	Check	response	on	entering	valid	
Agent	Name	and	password.	

• this	test	case	needs	input	values	Agent	Name	&	Password
• Identifying	test	data	can	be	time-consuming	and	may	some	times	
require	creating	test	data	afresh.	

• For	this	reason	it	needs	to	be	documented

© 2011 Pearson Education,
Inc. Publishing as Prentice
Hall

Developing	Test	Cases

• Test	case	forms	have	the	following	sections:	
– Test	Case	ID
– Category/Objective	of	Test
– Description
– System	Version

31 Chapter 13

32

White	Box	Testing	(Glass	Box	Testing)

• Uses	the	form	of	the	code	itself	to	construct	
test	cases

• Designed	to	uncover	errors	in	program	logic
• Isn’t	directly driven	by	requirements,	
although	it	addresses	the	important	implicit	
requirement for	a	robust	and	reliable	system

• Done	mostly	at	the	unit	test	level

Testing	Phases	in	Detail

Unit	Testing	(White	box	testing)
• The	most	‘micro’	scale	of	Testing	

• A	unit	=	smallest	testable	software	component
• Objects	and	methods
• Procedures	/	functions

• Requires	detailed	knowledge	of	the	internal	program	design	and	code.	

• The	units	are	tested	in	isolation.

• Ensures	the	component	is	working	according	to	the	detailed	design/build	
specifications	of	the	module.	

35

Unit	Testing	(cont’d)
• Unit	testing	focuses	on	verifying	small	unit(s)	or	
modules of	the	software	design

• Unit	testing	should	include	test	cases	for:
– Interface	with	other	units
– Local	data	structures
– Independent	paths	through	the	code
– Error	handling	paths
– Boundary	conditions

Integration	Testing

• Testing	of	more	than	one	(tested)	unit	together	to	
determine	if	they	function	correctly.	

• Focus	on	interfaces
• Communication	between	units

• It	is	done	using	the	integration	test	design	prepared	during	the	
architecture	design	phase.	

• Helps	assembling	incrementally	a	whole	system,	ensuring	the	
correct	‘flow’	of	data	from	the	first	through	the	final	component.	

• Done	by	developers/designers	and	testers	in	collaboration

• Also	called	Interface	Testing	or	Assembly	Testing.	

37

Integration	Testing	(cont’d)
• Integration	testing	is	a	systematic	technique	for	constructing	

the	larger	program	structure	from	smaller	units,	while	testing	
to	uncover	errors	in	the	interfaces	between	units

• Integration	testing	often	uses	one	of	the	following	pairs	of	
techniques:
– Writing	driver	modules
– Assembling	from	the	bottom	up
or
– Stubbing	lower	level	units
– Assembling	from	the	top	down

© 2011 Pearson Education,
Inc. Publishing as Prentice
Hall

Stub	Testing

• Stub	testing:	a	technique	used	in	testing	
modules,	especially	where	modules	are	
written	and	tested	in	a	top-down	fashion,	
where	a	few	lines	of	code	are	used	to	
substitute	for	subordinate	modules

38 Chapter 13

39

Regression	Testing
• Regression	testing	focuses	on	testing	the	larger	program	

into	which	a	new	or	modified	unit	or	module	has	been	
inserted.	

• Regression	testing	usually	involves	re-executing	some	
subset	of	the	test	plan	that	was	used	to	test	the	larger	
system	before	its	modification

• Regression	testing	can	also	involve	employing	new	test	
cases	designed	to	test	the	impact	of	the	modifications	on	
the	larger	system

• Regression	testing	focuses	on	verifying	that	modifications	
have no	unintended	impact on	the	larger	program

40

System	Testing

• Most	software	development	is	done	as	a	part	of	a	larger	system.	
System	testing	focuses	on	testing	the	larger	system	once	it	is	
assembled

• Systems	testing	is	usually	a	series	of	tests	designed	to	exercise	
the	completed	system	and	all	its	components	within	the	
“production”	environment

• Testing	the	system	as	a	whole	- Black-box	type	
testing	that	is	based	on	overall	requirements	
specifications;	covers	all	combined	parts	of	a	
system.	

System	Testing	(cont’d)

• Ensures	that	system	meets	all	functional	and	business	
requirements.	

• Focus
• Verifying	that	specifications	are	met
• Validating	that	the	system	can	be	used	for	the			intended	
purpose

• The	system	test	design	is	derived	from	the	system	design	
documents	and	is	used	in	this	phase.	

• It	can	involve	a	number	of	specialized	types	of	tests	to	check	
performance,	stress,	documentation	etc.	Sometimes	testing	is	
automated	using	testing	tools.	

© 2011 Pearson Education,
Inc. Publishing as Prentice
Hall

System	Testing(Cont.)
• Types	of	System	Tests:

– Recovery	testing	— forces	software	(or	environment)	 to	fail	in	order	 to	verify	
that	recovery	is	properly	performed.	how	does	the	software	recover	from	a	
series	of	possible	exceptional	events?

– Security	testing	— verifies	that	protection	mechanisms	built	 into	the	system	
will	protect	it	from	 improper	penetration

– Stress	testing/Load	testing	— tries	to	break	the	system.	Will	system	perform	
under	 real	life	loads. How	does	the	software	perform	when	given	abnormally	
large	volume	demands?

– Performance	testing	— determines	how	the	system	performs	on	the	range	of	
possible	environments	 in	which	it	may	be	used

– Migration	 testing	– ensure	software	can	be	moved	from	older	 infrastructure	to		
current	system	infrastructure	without	any	problems

– Regression	testing	– make	sure	none	of	the	changes	made	over	the	course	of	
development	have	caused	new	bugs.	Also	makes	sure	no	old	bugs	appear	
from	addition	of	new	software	modules	 over	time.

– Usability	testing	– focuses	on	the	user’s	ease	to	use	application,	flexibility	 in	
handling	 controls	and	ability	to	meet	objectives.

42 Chapter 13

Acceptance	Testing
• The process	whereby	actual	users	test	a	

completed	information	system,	the	end	result	of	which	is	the	users’	
acceptance	of	it

• To	determine	whether	a	system	satisfies	its	acceptance	
criteria	and	business	requirements	or	not.

• Similar	to	System	testing	in	that	the	whole	system	is	checked,	
but	the	important	difference	is	the	change	in	focus.	

• Done	by	real	business	users.	

• It	enables	the	customer	to	determine	whether	to	accept	the	system	or	not.	

• Also	called	as	Beta	Testing,	Application	Testing	or	End	User	Testing.	

• Approach
• Should	be	performed	in	real	or	simulated	operating	environment	.
• Customer	should	be	able	to	perform	any	test	based	on	their	business	

processes.
• Final	Customer	sign-off.	

44

Acceptance	Testing	(cont’d)

• Where	appropriate	customers	should	be	involved	in	
earlier	testing	phases	as	well

• Acceptance	criteria should	be	established	as	part	of	the	
requirements	

• Acceptance	testing	verifies	that	the	system	satisfies	the	
requirements

• Developers	should	anticipate	implied	requirements for	
quality,	performance,	and	usability	as	well

© 2011 Pearson Education,
Inc. Publishing as Prentice
Hall

45 Chapter 13

Acceptance	Testing	by	Users	(Cont’d)

• Alpha	testing:	user	testing	of	a	completed	
information	system	using	simulated	data

• Beta	testing:	user	testing	of	a	completed	
information	system	using	real	data	in	the	real	
user	environment

46

Black	Box	Testing	(Behavioral	Testing)

• Focuses	on	the	functional	requirements
• Test	cases	are	formed	to	test	the	program’s	behavior	
against	various	input	scenarios,	without	regard	to	the	
internal	logic	of	the	code	itself

• Used	in	integration,	system,	and	acceptance	testing
• Black	box	testing	is	not	an	alternative to	white	box	
testing

• White	box	and	black	box	testing	are	complementary

47

Black	Box	Testing (cont’d)

• Black	box	tests	suites	are	designed	to	answer	
the	following	questions
– How	can	functionality	be	verified?
– How	can	system	performance	be	tested?
– How	can	system	usability	be	tested?
– What	classes	of	input	will	make	good	test	cases?
– How	does	the	program	behave	at	the	boundaries	of	
normal	input	classes?

– What	combinations	of	data	and/or	actions	should	be	
considered?

– How	does	the	system	behave	against	“bad”	data?

Capacity	Planning
• In	1997,	Oxford	Health	Plans	posted	a	$120	million	loss	to	its	

books.	The	company’s	unexpected	growth	was	its	undoing	
because	the	system,	which	was	originally	planned	to	support	
the	company’s	217,000	members,	had	to	meet	the	needs	of	a	
membership	that	exceeded	1.5	million.

• System	users	found	that	processing	a	new-member	sign-up	
took	15	minutes	instead	of	the	proposed	6	seconds.	Also,	the	
computer	problems	left	Oxford	unable	to	send	out	bills	to	
many	of	its	customer	accounts	and	rendered	it	unable	to	track	
payments	to	hundreds	of	doctors	and	hospitals.	

• In	less	than	a	year,	uncollected	payments	from	customers	
tripled	to	more	than	$400	million	and	the	payments	owed	to	
caregivers	amounted	to	more	than	$650	million.	

• Mistakes	in	infrastructure	planning	cost	far	more	than	the	cost	
of	hardware,	software,	and	network	equipment	alone.

Security	Testing
• You	may	be	aware	that	there	are	professional	security	firms	that	

organizations	can	hire	to	break	into	their	own	networks	to	test	security.	
BABank (pseudonym)	was	about	to	launch	a	new	online	banking	
application,	so	it	hired	such	a	firm	to	test	its	security	before	the	launch.		
The	bank’s	system	failed	the	security	test	– badly.

• The	security	team	began	by	mapping	the	bank’s	network.		It	used	
network	security	analysis	software	to	test	password	security,	and	dialing	
software	to	test	for	dial-in	phone	numbers.	This	process	found	many	
accounts	with	default	passwords	(i.e.	passwords	set	by	the	
manufacturer	that	are	supposed	to	be	changed	when	the	systems	are	
first	set	up).	

• The	team	then	tricked	several	high-profile	users	into	revealing	their	
passwords	to	gain	access	to	several	high-privilege	accounts.		Once	into	
these	computers,	the	team	used	password-cracking	software	to	find	
passwords	on	these	computers	and	ultimately	gain	the	administrator	
passwords	on	several	servers.		

• At	this	point,	the	team	transferred	$1000	into	their	test	account.		They	
could	have	transferred	much	more,	but	the	security	point	was	made.

50

Testing	System	Documentation	and	
Help

• Testing	plans	should	include	a	test	of	the	
system	documentation

• Similarly	help	functions	should	be	tested	as	
well

• Errors	in	documentation	and	help	facilities	
are	extremely	frustrating	to	users

