What is a Language?

- English: “letters”, “words”, “sentences”
- Programming: “keywords”, “variables”, “numbers”, “symbols”
- General: *language structure* – decision of whether a given string of units is “matched” or *valid*
Important Terms

• *alphabet* – finite set of fundamental units out of which we build structures.
• *language* – a certain specified set of strings of characters from the alphabet
• *words* – strings which are permissible in the language
• *empty string or null string* – a string which has no letters (\(\lambda\))
• *null set* – denoted as \(\emptyset\)

Question

Is there a difference between empty string and an empty language?
An Aside on Set Theory

Assume

- L is a language
- $+$ is “union of sets” operator
- \emptyset is empty set
- λ is empty string

Claim 1

$L + \{\lambda\} \neq L$

Claim 2

$L + \emptyset = L$

This implies that \emptyset is a valid definition for a language
The English Languages

Alphabet

\[\Sigma = \{a, b, c, d, e \ldots z', -\} \]

Words

\[ENGLISH-WORDS = \{\text{all the words in a standard dictionary}\} \]

Problem: How can we represent sentences?
The *Real* English Languages

Alphabet

\[\Gamma = \text{entries of } ENGLISH\text{-WORDS} + \{ \text{space} \} + \{ \text{punctuation} \} \]

Words (a.k.a. English Sentences)

- Must rely on grammatical rules of English
- There are *infinitely many*
 - I ate one apple.
 - I ate two apples.
 - I ate three apples.
 -

We can list all rules of the grammar to give a *finite description* for an *infinite language*. This will make “I ate three Tuesdays” valid!
Defining a Language

Language Defining Rules

1. Tell us how to test a string of alphabet letters that we are presented with
2. Tell us how to construct all of the words in the language by some clear procedure

Example

\[\sum = \{x\} \]

\[L_1 = \{x \ xx \ xxx \ xxxx \ \ldots\} \]

alternatively,

\[L_1 = \{x^n \text{ for } n = 1 \ 2 \ 3 \ \ldots\} \]
Working with a Language

Null String?
A language does not need to accept λ. L_1 doesn’t

Concatenation
- Two strings written side by side yield a new string
- x^n concatenated with x^m is x^{n+m}

Symbols
- We can designate a word in a given language by a new symbol
 - Let $a = xx$ and $b = xxx$
 - Therefore, $ab = xxxxx$
- Two words of L concatenated are not guaranteed to produce another word in L
Example: Numbers

Example

\[\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \]

\[L_3 = \{ \text{any finite string of } \Sigma \text{ letters that doesn’t start with 0} \} \]

A subset of \(L_3 \) might look like:

\[L_3 = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, \ldots\} \]

If we want to allow the string (word) 0, we could say:

\[L_3 = \{ \text{any finite string of } \Sigma \text{ letters that, if it starts with 0,} \]
\[\text{has no more letters after the first} \} \]
Example: Length

We define the function **length** of a string to be the number of letters in the string. We write this function using the word “length”. For example, if $a = xxxx$ in the language L_1, then

$$\text{length}(a) = 4$$

Or we could write directly that in a language, such as L_3,

$$\text{length}(428) = 3$$

In any language which includes λ we have

$$\text{length}(\lambda) = 0$$

Corollary: For any word w in a language, if $\text{length}(w) = 0$, then $w = \lambda$
Redefining Number with **length**

We can present another definition for L_3

$$L_3 = \{ \text{any finite string of } \Sigma \text{ letters that, if it has}\$$
$$\text{length more than 1, does not start with a 0} \}$$

This isn’t necessarily a better definition, but it illustrates equivalent languages can be defined in multiple ways.
Adding λ to a finite language

If we look back to L_1, which described one or more “x” characters defining valid words, we may want to expand the language to include empty string

$L_4 = \{\lambda \ x \ xx \ xxx \ xxxx \ldots\}$

Alternatively,

$L_4 = \{x^n \text{ for } n = 0 \ 1 \ 2 \ 3 \ldots\}$

Notice: $x^0 = \lambda$
Example: Reverse

Definition

Let us introduce the function **reverse**. If a is a word in some language, L, then $\text{reverse}(a)$ is the same string of letters spelled backward even if this backwards string is not a word in L.

Example

\[
\begin{align*}
\text{reverse}(\text{xxx}) &= \text{xxx} \\
\text{reverse}(\text{xxxxx}) &= \text{xxxxx} \\
\text{reverse}(145) &= 541
\end{align*}
\]

But let us also note that in L_1,

\[
\begin{align*}
\text{reverse}(140) &= 041
\end{align*}
\]

which is not a word in L_1
Example: Palindrome Language

Definition

PALINDROME \((P)\) is a new language over the alphabet

\[
\Sigma = \{a, b\}
\]

\[
P = \{\lambda, \text{and all strings } x \mid \text{reverse}(x) = x\}
\]

\[
\therefore
\]

\[
P = \{\lambda, a, b, aa, bb, aaa, aba, bab, bbb, aaaa, abba, \ldots\}
\]

Interesting Properties

1. *concatenating* two words from \(P\) sometimes produces a word within \(P\). e.g. \(abba + abba = abbaabba\)

2. More often than not, *concatenating* two words from \(P\) does not yield a word within \(P\). e.g. \(aa + aba = aaaba\)
Kleene Closure (or the Kleene Star)

Definition

- Given an alphabet Σ, we wish to define a language in which any string of letters from Σ is a word, even the null string λ.
- This language shall be known as the **closure** of the alphabet.
- Symbolically denoted as: Σ^*

Example

If $\Sigma = \{x\}$, then $\Sigma^* = \{\lambda \, x \, xx \, xxx \, xxxx \ldots\}$

If $\Sigma = \{0 \, 1\}$, then $\Sigma^* = \{\lambda \, 0 \, 1 \, 00 \, 01 \, 10 \, 11 \, 000 \, 001 \ldots\}$

If $\Sigma = \{a \, b \, c\}$, then $\Sigma^* = \{\lambda \, a \, b \, c \, aa \, ab \, ac \, ba \, bb \, bc \, ca \, cb \, cc \, aaa \ldots\}$
Kleene Closure

• an operation that makes an infinite language or strings of letters out of an alphabet
• infinitely many words, each of a finite length
• often ordered by size first, then lexicographically

Definition

If S is a set of words, then S^* means the set of all finite strings formed by concatenating words from S. Any word may be used as often as we like, and λ is also included.

Problem

Compare:

ENGLISH-WORDS* and ENGLISH-SENTENCES
Kleene Closure

Example

\[S = \{aa \ b\} \]
\[S^* = ? \]

Example

\[S = \{a \ ab\} \]
\[S^* = ? \]

To prove that a certain word is in the closure language \(S^* \), we must show how it can be written as a **concatenation** of words from the base set \(S \).
Factor

The concatenation of words from a base set S can be viewed as a factor of a word from closure set S^*

Example

$S = \{xx \ .xxx\}$
$S^* = \{x^n \text{ for } n = 0 \ 2 \ 3 \ 4 \ \ldots\}$

Notice how the word x is the only word not in the language S^*

There is also ambiguity in factoring certain strings e.g. xxxxxxxx

$$(xx)(xx)(xxx) \text{ or } (xx)(xxx)(xx) \text{ or } (xxx)(xx)(xx)$$

How can we prove that S only contains repetitions of letter x not equal to size of 1?
Proving S^* contains all $x^n \mid n \neq 1$

Example

$S = \{xx \ xxx\}$
$S^* = \{x^n \text{ for } n = 0 \ 2 \ 3 \ 4 \ \ldots\}$

Proof (by constructive algorithm).

Base: $x^0 = \lambda$
Base: $x^2 = xx$
Base: $x^3 = xxx$

Factor: $x^4 = x^2 + x^2$
Factor: $x^5 = x^3 + x^2$

$x^{n+2} = x^n + x^2$ □
Kleene Closure

The Kleene closure of two sets can end up being the same language

Example

\[S = \{a \ b \ ab\} \]
\[T = \{a \ b \ bb\} \]

- Both \(S^* \) and \(T^* \) define languages of all strings of \(a \)'s and \(b \)'s.
- Any string of \(a \)'s and \(b \)'s can be factored into syllables \((a)\) and \((b)\).

Consider \(ababbabba \) and \(abababbb \)
+ Notation

If for some reason we wish to modify the concept of closure to refer to only the concatenation of some non-zero strings from a set S, we use the notation $^+$ instead of *

Example

If $\Sigma = \{x\}$, then $\Sigma^+ = \{x \; xx \; xxx \ldots\}$

- This is often referred to as positive closure ("one-or-more")
- If S is a language which contains λ, then $S^+ = S^*$
- If S is a language which doesn’t contain λ, then $S^+ = S^* - \{\lambda\}$
Double Closure

Given S^*, apply its closure: $(S^*)^*$

- If S is not \emptyset or $\{\lambda\}$, then S^* is infinite
- We will be taking the closure of an infinite set
- Arbitrary concatenation of the alphabet, applied twice

Proving $S^* = S^{**}$ (by construction).

$S = \{a, b\}$
$s = aababaaaaaba$ [arbitrary string]
$s = (aaba)(baaa)(aaba)$ [constructed from S^*]
$s = [(a)(a)(b)(a)][(b)(a)(a)(a)][(a)(a)(b)(a)]$ [constructed from S^{**}]
$s = (a)(a)(b)(a)(b)(a)(a)(a)(a)(a)(a)(b)(a)$ [converted from S^{**} to S^*]

$S^{**} \subset S^*$ [\forall e \in S^{**}, e \in S^*$]
$S^* \subset S^{**}$ [\forall e \in S^*, e \in S^{**}]
$S^* = S^{**}$ \square