

CSCI 340: Computational Models
Languages

Chapter 2

Department of Computer Science

What is a Language?

- English: "letters", "words", "sentences"
- Programming: "keywords", "variables", "numbers", "symbols"
- General: language structure - decision of whether a given string of units is "matched" or valid

Important Terms

- alphabet - finite set of fundamental units out of which we build structures.
- language - a certain specified set of strings of characters from the alphabet
- words - strings which are permissible in the language
- empty string or null string - a string which has no letters (λ)
- null set - denoted as \varnothing

Question

Is there a difference between empty string and an empty language?

An Aside on Set Theory

Assume

- L is a language
- + is "union of sets" operator
- \varnothing is empty set
- λ is empty string

Claim 1

$L+\{\lambda\} \neq L$

Claim 2

$L+\varnothing=L$
This implies that \varnothing is a valid definition for a language

The English Languages

Alphabet

$\Sigma=\left\{a b c d e \ldots z^{\prime}-\right\}$
Words
ENGLISH-WORDS $=$ \{all the words in a standard dictionary $\}$
Problem: How can we represent sentences?

The Real English Languages

Alphabet

$\Gamma=$ entries of ENGLISH-WORDS $+\{$ space $\}+\{$ punctuation $\}$

Words (a.k.a. English Sentences)

- Must rely on grammatical rules of English
- There are infinitely many
- I ate one apple.
- I ate two apples.
- I ate three apples.
-

We can list all rules of the grammar to give a finite description for an infinite language. This will make "I ate three Tuesdays" valid!

Defining a Language

Language Defining Rules

(1) Tell us how to test a string of alphabet letters that we are presented with
2 Tell us how to construct all of the words in the language by some clear procedure

> Example $\left.\begin{array}{l}\Sigma=\{x\} \\ L_{1}=\{x x x\end{array}\right)$ \quad alternatively, $L_{1}=\left\{x^{n}\right.$ for $\left.n=123 \ldots\right\}$

Working with a Language

Null String?

A language does not need to accept λ. L_{1} doesn't

Concatenation

- Two strings written side by side yield a new string
- x^{n} concatenated with x^{m} is x^{n+m}

Symbols

- We can designate a word in a given language by a new symbol
- Let $a=x x$ and $b=x x x$
- Therefore, $a b=x x x x x x$
- Two words of L concatenated are not guaranteed to produce another word in L

Example: Numbers

Example

$\Sigma=\{0123456789\}$
$L_{3}=\{$ any finite string of Σ letters that doesn't start with 0$\}$
A subset of L_{3} might look like:

$$
L_{3}=\{123456789101112 \ldots\}
$$

If we want to allow the string (word) 0 , we could say:
$L_{3}=\{$ any finite string of Σ letters that, if it starts with 0, has no more letters after the first \}

Example: Length

We define the function length of a string to be the number of letters in the string. We write this function using the word "length". For example, if $a=x x x x$ in the language L_{1}, then

$$
\text { length }(a)=4
$$

Or we could write directly that in a language, such as L_{3},

$$
\text { length(428) }=3
$$

In any language which includes λ we have

$$
\text { length }(\lambda)=0
$$

Corollary: For any word w in a language, if length $(w)=0$, then $w=\lambda$

Redefining Number with length

We can present another definition for L_{3}
$L_{3}=\{$ any finite string of Σ letters that, if it has length more than 1 , does not start with a 0 \}

This isn't necessarily a better definition, but it illustrates equivalent languages can be defined in multiple ways.

Adding λ to a finite language

If we look back to L_{1}, which described one or more " x " characters defining valid words, we may want to expand the language to include empty string

$$
L_{4}=\{\lambda x x x x x x x x x x \ldots\}
$$

Alternatively,

$$
L_{4}=\left\{x^{n} \text { for } n=0123 \ldots\right\}
$$

Notice: $x^{0}=\lambda$

Example: Reverse

Definition

Let us introduce the function reverse. If a is a word in some language, L, then reverse (a) is the same string of letters spelled backward even if this backwards string is not a word in L.

Example

$$
\begin{aligned}
\operatorname{reverse}(x x x) & =x x x \\
\operatorname{reverse}(x x x x x) & =x x x x x \\
\operatorname{reverse}(145) & =541
\end{aligned}
$$

But let us also note that in L_{1},

$$
\operatorname{reverse}(140)=041
$$

which is not a word in L_{1}

Example: Palindrome Language

Definition

PALINDROME (P) is a new language over the alphabet

$$
\begin{gathered}
\sum=\{a b\} \\
P=\{\lambda, \text { and all strings } x \mid \text { reverse }(x)=x\} \\
\therefore \\
P=\{\lambda a b \text { aa bb aaa } a b a b a b b b b \text { aaaa } a b b a \ldots\}
\end{gathered}
$$

Interesting Properties

(1) concatenating two words from P sometimes produces a word within P. e.g. $a b b a+a b b a=a b b a a b b a$
(2) More often than not, concatenating two words from P does not yield a word within P. e.g. $a a+a b a=a a a b a$

Kleene Closure (or the Kleene Star)

Definition

- Given an alphabet Σ, we wish to define a language in which any string of letters from Σ is a word, even the null string λ.
- This language shall be known as the closure of the alphabet.
- Symbolically denoted as: Σ^{*}

Example

$$
\text { If } \Sigma=\{x\} \text {, then } \Sigma^{*}=\{\lambda x x x x x x x x x x \ldots\}
$$

Example

$$
\text { If } \Sigma=\{01\} \text {, then } \Sigma^{*}=\{\lambda 0100011011000001 \ldots\}
$$

Example

If $\Sigma=\{a b c\}$, then $\Sigma^{*}=\{\lambda a b c a a a b a c b a b b b c c a c b c c a a a \ldots\}$

Kleene Closure

- an operation that makes an infinite language or strings of letters out of an alphabet
- infinitely many words, each of a finite length
- often ordered by size first, then lexicographically

Definition

If S is a set of words, then S^{*} means the set of all finite strings formed by concatenating words from S. Any word may be used as often as we like, and λ is also included.

Problem

Compare:
ENGLISH-WORDS* and ENGLISH-SENTENCES

Kleene Closure

Example

$$
\begin{gathered}
S=\{a a b\} \\
S^{*}=?
\end{gathered}
$$

Example

$$
\begin{gathered}
S=\{a a b\} \\
S^{*}=?
\end{gathered}
$$

To prove that a certain word is in the closure language S^{*}, we must show how it can be written as a concatenation of words from the base set S.

Factor

The concatenation of words from a base set S can be viewed as a factor of a word from closure set S^{*}

Example

$S=\{x x x y x\}$
$S^{*}=\left\{x^{n}\right.$ for $\left.n=0234 \ldots\right\}$
Notice how the word x is the only word not in the language S^{*}
There is also ambiguity in factoring certain strings e.g. $x x x x x y x$

$$
(x x)(x x)(x X x) \text { or }(x x)(x X X)(x x) \text { or }(x X x)(x x)(x x)
$$

How can we prove that S only contains repetitions of letter x not equal to size of 1 ?

Proving S^{*} contains all $x^{n} \mid n \neq 1$

Example

$S=\{x x x y x\}$
$S^{*}=\left\{x^{n}\right.$ for $\left.n=0234 \ldots\right\}$

Proof (by constructive algorithm).

Base: $x^{0}=\lambda$
Base: $x^{2}=x x$
Base: $x^{3}=x x x$
Factor: $x^{4}=x^{2}+x^{2}$
Factor: $x^{5}=x^{3}+x^{2}$
$x^{n+2}=x^{n}+x^{2}$

Kleene Closure

The Kleene closure of two sets can end up being the same language

Example

$S=\{a b a b\}$
$T=\{a b b b\}$

- Both S^{*} and T^{*} define languages of all strings of a 's and b 's.
- Any string of a 's and b 's can be factored into syllables (a) and (b)

Consider ababbabba and abababbbb

+ Notation

If for some reason we wish to modify the concept of closure to refer to only the concatenation of some non-zero strings from a set S, we use the notation ${ }^{+}$instead of *

Example

$$
\text { If } \Sigma=\{x\}, \quad \text { then } \Sigma^{+}=\{x x x x x x \ldots\}
$$

- This is often referred to as positive closure ("one-or-more")
- If S is a language which contains λ, then $S^{+}=S^{*}$
- If S is a language which doesn't contain λ, then $S^{+}=S^{*}-\{\lambda\}$

Double Closure

Given S^{*}, apply its closure: $\left(S^{*}\right)^{*}$

- If S is not \varnothing or $\{\lambda\}$, then S^{*} is infinite
- We will be taking the closure of an infinite set
- Arbitrary concatenation of the alphabet, applied twice

Proving $S^{*}=S^{* *}$ (by construction).

$$
\begin{array}{lr}
S=\{a b\} & \\
s=a a b a b a a a a a b a & \text { [arbitrary string] } \\
s=(a a b a)(b a a a)(a a b a) & \text { [constructed from } \left.S^{*}\right] \\
s=[(a)(a)(b)(a)][(b)(a)(a)(a)][(a)(a)(b)(a)] & \text { [constructed from } \left.S^{* *}\right] \\
s=(a)(a)(b)(a)(b)(a)(a)(a)(a)(a)(b)(a) & \text { [converted from } \left.S^{* *} \text { to } S^{*}\right] \\
S^{* *} \subset S^{*} & {\left[\forall e \in S^{* *}, e \in S^{*}\right]} \\
S^{*} \subset S^{* *} & {\left[\forall e \in S^{*}, e \in S^{* *}\right]} \\
S^{*}=S^{* *} &
\end{array}
$$

