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Linear Regression
¨ What: for predicting a quantitative variable
¨ Age: “it’s been around for a long time”
¨ Complexity: somewhat dull compared to more 

modern statistical learning techniques
¨ Popularity: still widely used

Fancier, modern, data mining approaches can be seen as generalization or extensions of 
Linear Regression.



Advertising Dataset
¨ Sales totals for a product in 200 different markets

¤ Advertising budget in each market, broken down into 
TV, radio, newspaper



Advertising Dataset
> head(Advertising) 
X    TV Radio Newspaper Sales 

1 1 230.1 37.8      69.2  22.1 
2 2 44.5  39.3      45.1  10.4 
3 3 17.2  45.9      69.3   9.3 
4 4 151.5 41.3      58.5  18.5 
5 5 180.8 10.8      58.4  12.9 
6 6 8.7  48.9      75.0   7.2



Advertising Dataset
¨ Goal:What marketing plan for next year will result in high 

product sales?
¨ Questions:

1. Is there a relationship between advertising budget and sales?
2. How strong is the relationship between advertising budget and 

sales?
n Strong relationship: given the advertising budget, we can predict 

sales with a high level of accuracy
n Weak relationship: given the advertising budget, our prediction of 

sales is only slightly better than a random guess



Advertising Dataset
¨ Goal:What marketing plan for next year will result in high 

product sales?
¨ Questions:

3. Which media contribute to sales?
n Need to separate the effects of each medium

4. How accurately can we estimate the effect of each medium on 
sales?

n For every dollar spent on advertising in a particular medium, by 
what amount will sales increase? How accurately can we predict 
this increase?



Advertising Dataset
¨ Goal: What marketing plan for next year will result in high 

product sales?
¨ Questions:

5. Is the relationship linear?
n If the relationship between advertising budget and sales is a 

straight-line, then linear regression seems appropriate.
n If not, all is not lost yet. (Variable Transformation)

6. Is there any interaction effect? (called “synergy” in business)
n Example: spending 50k on TV ads + 50k on radio ads results in 

more sales than spending 100k on only TV



Simple Linear Regression
¨ Predicting quantitative response Y based on a 

single predictor variable X
¨ Assumes linear relationship between X and Y

Y ≈ B0 +B1X

read ≈  as "is approximately modeled as"

“we are regressing Y onto X”



Simple Linear Regression
¨ Two unknown constants 

¤ Also called “model coefficients” or “parameters”

Y ≈ β0 +β1X

¨ Use training data to produce estimates for the 
model coefficients:

ŷ = β̂0 + β̂1x
In practice, β0  and β1  are unknown.

β0 = intercept
β1 = slope



Estimating the Coefficients
¨ Goal is to obtain coefficient estimates such that the 

linear model fits the available data well
¤ To find an intercept       and slope       such that the 

resulting line is as close as possible to the data points
¤ Q: How to determine “closeness”?
¤ A: Common approach: least squares

β̂0 β̂1



Residual Sum of Squares (RSS)
¨ Prediction for Y based on the ith value of X

¨ ith residual: difference between the ith observed 
response value and the ith predicted value

¨ Residual Sum of Squares (RSS):

ŷi = β̂0 + β̂1xi

ei = yi − ŷi

RSS = e1
2 + e2

2 +...+ en
2



Least Squares

¨ Residual Sum of Squares (RSS):

¨ Least Squares: chooses    and    to minimize the RSS
RSS = e1

2 + e2
2 +...+ en

2

ŷ = β̂0 + β̂1x

β̂0 β̂1



Least Squares
¨ Using some calculus to 

minimize the RSS, we get: β̂1 =
(xi − x )(yi − y )

i=1

n
∑

(xi − x )2

i=1

n
∑

β̂0 = y − β̂1x
sample means:

y ≡ 1
n

yii=1

n
∑

x ≡ 1
n

xii=1

n
∑



Simulated Example
¨ Population Regression Line:

¨ Least Squares Line:

Y = β0 +β1X +ε

ŷ = β̂0 + β̂1x

Simulated data:
• 100 random Xs
• 100 corresponding Ys from the model
• ε generated from normal distribution

Red line: Y=2+3X+ε
Blue line: least squares estimate based on 
observed data



Simulated Example
¨ True relationship “of the 

population” (red line) not 
usually known for real data

¨ Depending on the set of 
observations, “the sample”, 
the estimated coefficients 
and model will change

Simulated data:
• 100 random Xs
• 100 corresponding Ys from the model
• εgenerated from normal distribution

Red line: Y=2+3X+ε
Blue line: least squares estimate based on 
observed data



Simulated Example
Red line is the “true relationship” in the population Red line doesn’t change

Right graph: ten least 
square lines (blueish),
each for a different 
simulation of the red 
line.

Because of the error 
term, the “sample” 
data points are 
different for each 
simulation.



Advertising Dataset
¨ What are some ways we can regress sales onto 

adverting using Simple Linear Regression?
¨ One model:

Y ≈ B0 +B1X

sales ≈ β0 +β1 ×TV



Advertising Dataset
¨ Scatter plot visualization for TV and Sales.

> plot(Advertising$Sales ~ Advertising$TV)



Advertising Dataset
¨ Simple Linear Model in R:

¤ General form: lm(y~x, data)
¤ Predictor: x
¤ Response: y > lm(Advertising$Sales ~ Advertising$TV) 

Call: lm(formula = Advertising$Sales ~ Advertising$TV) 

Coefficients: 
(Intercept) Advertising$TV

7.03259                         0.04754 

Sales = 7.03259 + 0.04754 * TV



Advertising Dataset
¨ Scatter plot visualization for TV and Sales with Linear Model.

> lm.fit=lm(Advertising$Sales ~ Advertising$TV)
> abline(lm.fit)

“a b line” – draw 
line of intercept a
and slope b



Simple Linear Model
¨ Our assumption was that the relationship between X

and Y took the form:

¨ Expected value when X=0 is
¨ Average increase in Y when there is a one-unit increase 

in X is  
¨ Error term: what model misses, measurement error, etc.

Y = β0 +β1X +ε
β0

β1



Assessing the Accuracy of the Model
¨ Trying to quantify the extent to which the model fits the 

data (so we can draw conclusions about population)
¤ Typically assessed with:

1. Residual standard error (RSE)
2. R2 statistic

¨ Different than measuring how good the model’s 
predictions were on a test set

¤ Root Mean Squared Error (RMSE) 



Measuring the Quality of a Regression 
Model

¨ Residual Standard Error

• (RSS “Residual Sum of Squares” sometimes called SSE “Sum of Squared Errors”)
• (RSE “Residual Standard Error” sometimes called “Standard Error of the Estimate” or 

“Residual Standard Deviation” – it is the estimated standard deviation of the residuals)
• We use RSE because the standard deviation is unknown, so we can’t calculate SE

RSE = RSS
(n− 2)



Cereal Dataset
¨ http://lib.stat.cmu.edu/DASL/Datafiles/Cereals.htm

l
¨ From CMU Data and Story Library
¨ 77 cereals
¨ 15 Attributes: calories, sugar content, protein, etc.
¨ Target: Consumer Reports “Health Rating” 

(continuous)

http://lib.stat.cmu.edu/DASL/Datafiles/Cereals.html


Cereal - R 
¨ Residual Sum of Squares
¨ Residual Standard Error
¨ Using Linear Model to Predict Value



Example
¨ Cereal Dataset

RSE = 9.196 ≈ 9.2
¤ “Typical error in predicting nutritional rating will be 

about 9.2 points.”
¤ “Estimate of the new cereal’s rating will be within 9.2 

points about 68% of the time.” (68% because it is one 
standard deviation)

RSE = RSS
(n− 2) =

6342
75





Confidence Intervals for Linear 
Regression

¨ Takes the form:

¨ That is, there is a 95% chance that the true value is in 
the above range.

¨ Same form for β0

β̂1 ± 2 ⋅SE(β̂1)

[β̂1 − 2 ⋅SE(β̂1),  β̂1 + 2 ⋅SE(β̂1)]



Advertising Dataset
> Advertising <-
read.csv("C:/Users/75RBURNS/Dropbox/work/wcu/600-
DataMining/data/Advertising.csv") 
> head(Advertising) 
X    TV Radio Newspaper Sales 

1 1 230.1 37.8      69.2  22.1 
2 2 44.5  39.3      45.1  10.4 
3 3 17.2  45.9      69.3   9.3 
4 4 151.5 41.3      58.5  18.5 
5 5 180.8 10.8      58.4  12.9 
6 6 8.7  48.9      75.0   7.2



Simple Linear Regression Model for 
Advertising Dataset

Y ≈ B0 +B1X

sales ≈ β0 +β1 ×TV



Advertising Dataset
¨ Scatter plot visualization for TV and Sales.

> plot(Advertising$Sales ~ Advertising$TV)



Advertising Dataset
¨ Simple Linear Model in R:

¤ General form: lm(y~x, data)
¤ Predictor: x
¤ Response: y > lm(Advertising$Sales ~ Advertising$TV) 

Call: lm(formula = Advertising$Sales ~ Advertising$TV) 

Coefficients: 
(Intercept) Advertising$TV

7.03259                         0.04754 

Sales = 7.03259 + 0.04754 * TV



Advertising:

¨ 95% confidence interval for B0 is [6.130, 7.935]
¨ 95% confidence interval for B1 is [0.042, 0.053]
¨ Prediction: if TV = 30, then Sales = 7.03259 + 0.04754(30) = 8.45879

Sales = 7.03259 + 0.04754 * TV

• In the absence of any advertising, sales will, on average, fall somewhere between 
6,130 and 7,940 units.

• For each $1,000 increase in television advertising, there will be an average 
increase in sales between 42 and 53 units.



Advertising Dataset
¨ RSE = 3.26

Actual sales in each market deviate from the true regression line by approximately 3.26 
units, on average.

¨ Is this error amount acceptable?
¤ Business answer: depends on problem context
¤ Worth noting the percentage error:

Percentage Error = RSE
mean sales

=
3.258656
14.0225

= 0.23238 = 23.2%



Assessing the Accuracy of the Model
¨ Trying to quantify the extent to which the model fits the 

data (so we can draw conclusions about population)
¤ Typically assessed with:

1. Residual standard error (RSE)
2. R2 statistic

¨ Different than measuring how good the model’s 
predictions were on a test set

¤ Root Mean Squared Error (RMSE) 



R2 Statistic
¨ Proportion of variance explained

¤ Always a value between 0 and 1
¤ Independent of the scale of Y (unlike RSE)

R2 = TSS − RSS
RSS

=1− RSS
TSS

TSS = (yi − y )
2∑

RSS = (yi − ŷi )
2∑



R2 Statistic

¨ TSS: total variance in the response Y
¤ Amount of variability inherent in the response, before the regression 

is performed
¨ RSS: amount of variability that is left unexplained after 

performing the regression
¨ TSS-RSS : the amount of variability that is explained

TSS = (yi − y )
2∑

RSS = (yi − ŷi )
2∑

R2 = TSS − RSS
RSS

=1− RSS
TSS



Advertising Dataset
¨ R2 = 0.61

Just under two-thirds of the variability in sales is explained by a linear regression on TV.



Interpreting R2 values
¨ R2 is a measurement of the linear relationship between X 

and Y
¨ R2 has an interpretational advantage over RSE in that it 

doesn’t depend on the units of Y
¨ Q: What is a good R2 value?

A: Depends on the application, of course.
¤ Example: problem from physics where it is known that a linear 

relationship exists, can expect a good  R2 value
¤ Example: other domains where linear model is rough 

approximation…



Assessing the Accuracy of the Model
¨ Trying to quantify the extent to which the model fits the 

data (so we can draw conclusions about population)
¤ Typically assessed with:

1. Residual standard error (RSE)
2. R2 statistic

¨ Different than measuring how good the model’s 
predictions were on a test set

¤ Root Mean Squared Error (RMSE) 



Predicting Values for New Data
¨ Confidence Interval: What is the confidence interval 

for the expected value of y given x (the new data)
¨ Prediction Interval: What is the interval into which 

you would expect the individual data points to fall?



Confidence Interval vs Prediction Interval



Confidence Interval vs. Prediction Interval
¨ Analogy:

¤ Trying to predict baseball batting average
¤ “Team” batting averages (mean of the player batting 

averages on that team), for all 30 teams, have low variance
n Should be easier to predict a team batting average

¤ “Individual batting averages are quite varied 
n Estimate of team average will be more precise than an estimate 

of a randomly chosen player, for the same level of confidence



Cereal - R
¨ Computing Confidence Interval using LM
¨ Computing Prediction Interval using LM



Evaluating the LM using a Test Set
¨ Given a set of predictions for m new cases for which 

we have results (a test set), we can evaluate the 
model’s predictions by:
1. Mean Error (ME)
2. Root Mean Square Error (RMSE)



Mean Error
¨ Mean error should be close to zero
¨ Mean errors different from zero indicate a bias in 

the model

ME = 1
m
!

"
#

$

%
& (yi − ŷi )
i=1

m

∑



Root Mean Square Error
¨ Root mean square error (vs mean square error) 

expresses the magnitude of the model’s error in the 
units of the response variable

RMSE = 1
m
!

"
#

$

%
& (yi − ŷi )

2

i=1

m

∑



R Example
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