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modified by Stephanie Schwartz



This is how it all started…
• Rakesh Agrawal, Tomasz Imielinski, Arun N. Swami: 
Mining Association Rules between Sets of Items in 
Large Databases. SIGMOD Conference 1993: 207-
216

• Rakesh Agrawal, Ramakrishnan Srikant: Fast 
Algorithms for Mining Association Rules in Large 
Databases. VLDB 1994: 487-499

• These two papers are credited with the birth of Data 
Mining

• For a long time people were fascinated with 
Association Rules and Frequent Itemsets
• Some people (in industry and academia) still are.

http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/sigmod93.html
http://www.informatik.uni-trier.de/~ley/db/conf/vldb/vldb94.html
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Market-Basket Data
• A large set of items, e.g., things sold in a 
supermarket.

• A large set of baskets, each of which is a small 
set of the items, e.g., the things one customer 
buys on one day.



4

Market-Baskets – (2)
• Really, a general many-to-many mapping 
(association) between two kinds of things, where 
the one (the baskets) is a set of the other (the 
items) 
• But we ask about connections among “items,” not 

“baskets.”
• The technology focuses on common events, not 
rare events.



• Given a set of transactions, find combinations of items 
(itemsets) that occur frequently

Market-Basket transactions

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Examples of frequent itemsets ! " ≥ 3

{Bread}: 4
{Milk} : 4
{Diaper} : 4
{Beer}: 3
{Diaper, Beer} : 3
{Milk, Bread} : 3

Frequent Itemsets

Support ! " : number of 
transactions that contain 
itemset I

Items: {Bread, Milk, Diaper, Beer, Eggs, Coke}
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Applications – (1)
• Items = products; baskets = sets of products 
someone bought in one trip to the store.

• Example application: given that many people buy 
beer and diapers together:
• Run a sale on diapers; raise price of beer.

• Only useful if many buy diapers & beer.
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Applications – (2)

• Baskets = Web pages; items = words.

• Example application: Unusual words appearing 
together in a large number of documents, e.g., 
“Brad” and “Angelina,” may indicate an interesting 
relationship.
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Applications – (3)
• items = sentences; Baskets = documents 
containing those sentences.

• Example application: Items that appear together 
too often could represent plagiarism.



Definition: Frequent Itemset
• Itemset

• A collection of one or more items
• Example: {Milk, Bread, Diaper}

• k-itemset
• An itemset that contains k items

• Support (s)
• Count: Frequency of occurrence of an 

itemset
• E.g.   s({Milk, Bread,Diaper}) = 2 
• Fraction: Fraction of transactions that 

contain an itemset
• E.g.   s({Milk, Bread, Diaper}) = 40%

• Frequent Itemset
• An itemset whose support is greater 

than or equal to a minsup threshold

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  
4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  
 

! " ≥ minsup



Mining Frequent Itemsets task

• Input: A set of transactions T, over a set of items I

• Output: All itemsets with items in I having 
• support ≥ minsup threshold

• Problem parameters:
• N = |T|: number of transactions

• d = |I|: number of (distinct) items

• w: max width of a transaction
• Number of possible itemsets?

• Scale of the problem:
• WalMart sells 100,000 items and can store billions of baskets.

• The Web has  billions of words and many billions of pages.

M = 2d



The itemset lattice
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Given d items, there are 
2d possible  itemsets



A Naïve Algorithm
• Brute-force approach, each itemset is a candidate : 

• Consider each itemset in the lattice, and count the support of each candidate by 
scanning the data

• Time Complexity ~ O(NMw) , Space Complexity ~ O(M)
• OR

• Scan the data, and for each transaction generate all possible itemsets. Keep a count 
for each itemset in the data.

• Time Complexity ~ O(N2w) , Space Complexity ~ O(M)

• Expensive since M = 2d !!!

TID Items 
1 Bread, Milk 
2 Bread, Diaper, Beer, Eggs 
3 Milk, Diaper, Beer, Coke 
4 Bread, Milk, Diaper, Beer 
5 Bread, Milk, Diaper, Coke 

 

N

Transactions List of
Candidates

M

w
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Computation Model

• Typically, data is kept in flat files rather than in a 
database system.
• Stored on disk.
• Stored basket-by-basket.
• Expand baskets into pairs, triples, etc. as you read 

baskets.
• Use k nested loops to generate all sets of size k.



Example file: retail
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 
30 31 32 
33 34 35 
36 37 38 39 40 41 42 43 44 45 46 
38 39 47 48 
38 39 48 49 50 51 52 53 54 55 56 57 58 
32 41 59 60 61 62 
3 39 48 
63 64 65 66 67 68 
32 69 
48 70 71 72 
39 73 74 75 76 77 78 79 
36 38 39 41 48 79 80 81 
82 83 84 
41 85 86 87 88 
39 48 89 90 91 92 93 94 95 96 97 98 99 100 101 
36 38 39 48 89 
39 41 102 103 104 105 106 107 108 
38 39 41 109 110 
39 111 112 113 114 115 116 117 118 
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 
48 134 135 136 
39 48 137 138 139 140 141 142 143 144 145 146 147 148 149 
39 150 151 152 
38 39 56 153 154 155 

Example: items are
positive integers,
and each basket 
corresponds to a line in the 
file of space separated 
integers
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Computation Model – (2)
• The true cost of mining disk-resident data is 
usually the number of disk I/O’s.

• In practice, association-rule algorithms read the 
data in passes – all baskets read in turn.

• Thus, we measure the cost by the number of 
passes an algorithm takes.
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Main-Memory Bottleneck
• For many frequent-itemset algorithms, main 
memory is the critical resource.
• As we read baskets, we need to count something, e.g., 

occurrences of pairs.
• The number of different things we can count is limited 

by main memory.



The Apriori Principle
• Apriori principle (Main observation):

– If an itemset is frequent, then all of its subsets must also 
be frequent

– If an itemset is not frequent, then all of its supersets
cannot be frequent

– The support of an itemset never exceeds the support of 
its subsets

– This is known as the anti-monotone property of support

)()()(:, YsXsYXYX ³ÞÍ"



Illustration of the Apriori principle

Found to be frequent

Frequent 
subsets  



Illustration of the Apriori principle

Found to be 
Infrequent

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDEPruned

Infrequent supersets



R. Agrawal, R. Srikant: "Fast Algorithms for Mining Association Rules", 
Proc. of the 20th Int'l Conference on Very Large Databases, 1994. 

The Apriori algorithm
Level-wise approach

Ck = candidate itemsets of size k
Lk = frequent itemsets of size k

Candidate 
generation

Frequent 
itemset

generation

1. k = 1, C1 = all items
2. While Ck not empty

3. Scan the database to find which itemsets in 
Ck are frequent and put them into Lk

4. Use Lk to generate a collection of candidate
itemsets Ck+1 of size k+1

5. k = k+1



Item Count
Bread 4
Coke 2
Milk 4
Beer 3
Diaper 4
Eggs 1

Itemset Count
{Bread,Milk} 3
{Bread,Beer} 2
{Bread,Diaper} 3
{Milk,Beer} 2
{Milk,Diaper} 3
{Beer,Diaper} 3

Itemset Count 
{Bread,Milk,Diaper} 2 
 

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Triplets (3-itemsets)

minsup = 3

If every subset is considered, 
6
1 + 62 + 63 = 6 + 15 + 20 = 41

With support-based pruning,
6
1 + 42 + 1 = 6 + 6 + 1 = 13

Illustration of the Apriori principle

Only this triplet has all subsets to be frequent
But it is below the minsup threshold

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  
4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  
 



Candidate Generation
• Basic principle (Apriori):

• An itemset of size k+1 is candidate to be frequent only if 
all of its subsets of size k are known to be frequent

• Main idea:
• Construct a candidate of size k+1 by combining

frequent itemsets of size k
• If k = 1, take the all pairs of frequent items
• If k > 1, join pairs of itemsets that differ by just one item
• For each generated candidate itemset ensure that all subsets of 

size k are frequent.



• Assumption: The items in an itemset are ordered
• E.g., if integers ordered in increasing order, if strings ordered in 

lexicographic order
• The order ensures that if item y > x appears before x, then x is not in the 

itemset

• The items in Lk are also listed in an order

Generate Candidates Ck+1

Create a candidate itemset of size k+1, by joining 
two itemsets of size k, that share the first k-1 items

Item 1 Item 2 Item 3
1 2 3
1 2 5
1 4 5



• Assumption: The items in an itemset are ordered
• E.g., if integers ordered in increasing order, if strings ordered in 

lexicographic order
• The order ensures that if item y > x appears before x, then x is not in the 

itemset

• The items in Lk are also listed in an order

Generate Candidates Ck+1

Create a candidate itemset of size k+1, by joining 
two itemsets of size k, that share the first k-1 items

Item 1 Item 2 Item 3
1 2 3
1 2 5
1 4 5

1 2 3 5



• Assumption: The items in an itemset are ordered
• E.g., if integers ordered in increasing order, if strings ordered in 

lexicographic order
• The order ensures that if item y > x appears before x, then x is not in the 

itemset

• The items in Lk are also listed in an order

Generate Candidates Ck+1

Create a candidate itemset of size k+1, by joining 
two itemsets of size k, that share the first k-1 items

Item 1 Item 2 Item 3
1 2 3
1 2 5
1 4 5 1 2 4 5

Are we missing something?
What about this candidate?



Generating Candidates Ck+1 in SQL

• self-join Lk
insert into Ck+1

select p.item1, p.item2, …, p.itemk, q.itemk

from Lk p, Lk q
where p.item1=q.item1, …, p.itemk-1=q.itemk-1, p.itemk < q.itemk



• L3={abc, abd, acd, ace, bcd}

• Self-join: L3*L3

– abcd from abc and abd

– acde from acd and ace

Example I

item1 item2 item3
a b c
a b d
a c d
a c e
b c d

item1 item2 item3
a b c
a b d
a c d
a c e
b c d

p.item1=q.item1,p.item2=q.item2, p.item3< q.item3



• L3={abc, abd, acd, ace, bcd}

• Self-joining: L3*L3

– abcd from abc and abd

– acde from acd and ace

Example I

item1 item2 item3
a b c
a b d
a c d
a c e
b c d

item1 item2 item3
a b c
a b d
a c d
a c e
b c d

p.item1=q.item1,p.item2=q.item2, p.item3< q.item3



• L3={abc, abd, acd, ace, bcd}

• Self-joining: L3*L3

– abcd from abc and abd

– acde from acd and ace

Example I

{a,b,c} {a,b,d}

{a,b,c,d}

item1 item2 item3
a b c
a b d
a c d
a c e
b c d

item1 item2 item3
a b c
a b d
a c d
a c e
b c d

p.item1=q.item1,p.item2=q.item2, p.item3< q.item3



• L3={abc, abd, acd, ace, bcd}

• Self-joining: L3*L3

– abcd from abc and abd

– acde from acd and ace

{a,c,d} {a,c,e}

{a,c,d,e}

Example I

item1 item2 item3
a b c
a b d
a c d
a c e
b c d

item1 item2 item3
a b c
a b d
a c d
a c e
b c d

p.item1=q.item1,p.item2=q.item2, p.item3< q.item3



Example II
Itemset Count 
{Beer,Diaper} 3 
{Bread,Diaper} 3 
{Bread,Milk} 3 
{Diaper, Milk} 3 
 
Itemset Count 
{Beer,Diaper} 3 
{Bread,Diaper} 3 
{Bread,Milk} 3 
{Diaper, Milk} 3 
 

Itemset 
{Bread,Diaper,Milk} 
 

{Bread,Diaper}
{Bread,Milk}
{Diaper, Milk}

Ö

Ö

Ö



Generate Candidates Ck+1
• Are we done? Are all the candidates valid?

• Pruning step: 
• For each candidate (k+1)-itemset create all subset k-itemsets
• Remove a candidate if it contains a subset k-itemset that is 

not frequent

Item 1 Item 2 Item 3
1 2 3
1 2 5
1 4 5

1 2 3 5

Is this a valid candidate?

No. Subsets (1,3,5) and (2,3,5) should also be frequent

Apriori principle



• L3={abc, abd, acd, ace, bcd}

• Self-joining: L3*L3

– abcd from abc and abd

– acde from acd and ace

• Pruning:
– abcd is kept since all subset itemsets are 

in L3

– acde is removed because ade is not in L3

• C4={abcd}

{a,c,d} {a,c,e}

{a,c,d,e}

acd ace ade cde
Ö Ö X

Example I
{a,b,c} {a,b,d}

{a,b,c,d}

abc abd acd bcd
Ö Ö Ö Ö



• We have all frequent k-itemsets Lk

• Step 1: self-join Lk

• Create set Ck+1 by joining frequent k-itemsets that 
share the first k-1 items

• Step 2: prune
• Remove from Ck+1 the itemsets that contain a subset  

k-itemset that is not frequent

Generate Candidates Ck+1



Computing Frequent Itemsets
• Given the set of candidate itemsets Ck, we need to compute 

the support and find the frequent itemsets Lk. 
• Scan the data, and use a hash structure to keep a counter 

for each candidate itemset that appears in the data

TID Items 
1 Bread, Milk 
2 Bread, Diaper, Beer, Eggs 
3 Milk, Diaper, Beer, Coke 
4 Bread, Milk, Diaper, Beer 
5 Bread, Milk, Diaper, Coke 

 

N

Transactions Hash Structure

k

Buckets

Ck



A simple hash structure
• Create a dictionary (hash table) that stores the 
candidate itemsets as keys, and the number of 
appearances as the value.

• Increment the counter for each itemset that you 
see in the transactions



Example

Suppose you have 15 candidate 
itemsets of length 3: 

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, 

{1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, 

{3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

Hash table stores the counts of the 
candidate itemsets as they have been 
computed so far

Key Value
{3 6 7} 0
{3 4 5} 1
{1 3 6} 3
{1 4 5} 5
{2 3 4} 2
{1 5 9} 1
{3 6 8} 0
{4 5 7} 2
{6 8 9} 0
{5 6 7} 3
{1 2 4} 8
{3 5 7} 1
{1 2 5} 0
{3 5 6} 1
{4 5 8} 0



Subset Generation

1  2  3  5  6

Transaction, t

2  3  5  61 3  5  62

5  61 33  5  61 2 61 5 5  62 3 62 5

5  63

1 2 3
1 2 5
1 2 6

1 3 5
1 3 6 1 5 6 2 3 5

2 3 6 2 5 6 3 5 6

Subsets of 3 items

Level 1

Level 2

Level 3

63 5

Given a transaction t, what 
are the possible subsets of 
size 3?

Recursion!



Example

Tuple {1,2,3,5,6} generates the 
following itemsets of length 3: 

{1 2 3}, {1 2 5}, {1 2 6}, {1 3 5}, {1 3 6}, 

{1 5 6}, {2 3 5}, {2 3 6}, {3 5 6}, 

Increment the counters for the itemsets
in the dictionary

Key Value
{3 6 7} 0
{3 4 5} 1
{1 3 6} 3
{1 4 5} 5
{2 3 4} 2
{1 5 9} 1
{3 6 8} 0
{4 5 7} 2
{6 8 9} 0
{5 6 7} 3
{1 2 4} 8
{3 5 7} 1
{1 2 5} 0
{3 5 6} 1
{4 5 8} 0



Example

Tuple {1,2,3,5,6} generates the 
following itemsets of length 3: 

{1 2 3}, {1 2 5}, {1 2 6}, {1 3 5}, {1 3 6}, 

{1 5 6}, {2 3 5}, {2 3 6}, {3 5 6}, 

Increment the counters for the itemsets
in the dictionary

Key Value
{3 6 7} 0
{3 4 5} 1
{1 3 6} 4
{1 4 5} 5
{2 3 4} 2
{1 5 9} 1
{3 6 8} 0
{4 5 7} 2
{6 8 9} 0
{5 6 7} 3
{1 2 4} 8
{3 5 7} 1
{1 2 5} 1
{3 5 6} 2
{4 5 8} 0



The Hash Tree Structure

2 3 4
5 6 7

1 4 5 1 3 6

1 2 4
4 5 7 1 2 5

4 5 8
1 5 9

3 4 5 3 5 6
3 5 7
6 8 9

3 6 7
3 6 8

1,4,7
2,5,8

3,6,9
Hash function = x mod 3

Suppose you have the same 15 candidate itemsets of length 3: 

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, 

{5 6 7}, {3 4 5}, {3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

You need:

• Hash function 

• Leafs: Store the itemsets

At the i-th level we hash on the i-th item



Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1 2 3 5 6

1 + 2 3 5 6 3 5 62 +

5 63 +

1,4,7
2,5,8

3,6,9

Hash Functiontransaction



Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7
2,5,8

3,6,9

Hash Function1 2 3 5 6

3 5 61 2 +

5 61 3 +

61 5 +

3 5 62 +

5 63 +

1 + 2 3 5 6

transaction



Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7
2,5,8

3,6,9

Hash Function1 2 3 5 6

3 5 61 2 +

5 61 3 +

61 5 +

3 5 62 +

5 63 +

1 + 2 3 5 6

transaction

Match transaction against 9 out of 15 candidates

Hash-tree enables to enumerate itemsets in transaction 
and match them against candidates

Increment the counters



C1 L1 C2 L2 C3Filter Filter ConstructConstruct

First
pass

Second
pass

All
items

All pairs
of items
from L1

Count
the pairs

Count
the items

Frequent
items

Frequent
pairs
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A-Priori for All Frequent Itemsets
• One pass for each k.
• Needs room in main memory to count each 
candidate k -set.

• For typical market-basket data and reasonable 
support (e.g., 1%), k = 2 requires the most 
memory.



Factors Affecting Complexity
• Choice of minimum support threshold

• lowering support threshold results in more frequent itemsets
• this may increase number of candidates and max length of frequent 

itemsets
• Dimensionality (number of items) of the data set

• more space is needed to store support count of each item
• if number of frequent items also increases, both computation and I/O 

costs may also increase
• Size of database

• since Apriori makes multiple passes, run time of algorithm may 
increase with number of transactions

• Average transaction width
• transaction width increases with denser data sets
• This may increase max length of frequent itemsets and traversals of 

hash tree (number of subsets in a transaction increases with its width)



ASSOCIATION RULES



Association Rule Mining
• Given a set of transactions, find rules that will predict the 

occurrence of an item based on the occurrences of other 
items in the transaction

Market-Basket transactions

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  
4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  
 

Example of Association Rules

{Diaper} ® {Beer},
{Milk, Bread} ® {Eggs,Coke},
{Beer, Bread} ® {Milk},

Implication means co-occurrence, 
not causality!



Definition: Association Rule

Example:
Beer}Diaper,Milk{ Þ

4.0
5
2

|T|
)BeerDiaper,,Milk(

===
ss

67.0
3
2

)Diaper,Milk(
)BeerDiaper,Milk,(

===
s

sc

● Association Rule
– An implication expression of the form 

X ® Y, where X and Y are itemsets

– Example:
{Milk, Diaper} ® {Beer}

● Rule Evaluation Metrics
– Support (s)

u Fraction of transactions that contain 
both X and Y

u the probability P(X,Y) that X and Y 
occur together

– Confidence (c)

u Measures how often items in Y 
appear in transactions that
contain X

u the conditional probability P(Y|X) that Y 
occurs given that X has occurred.

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  
4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  
 



Association Rule Mining Task
• Input: A set of transactions T, over a set of items I
• Output: All rules with items in I having 

• support ≥ minsup threshold
• confidence ≥ minconf threshold



Mining Association Rules
• Two-step approach: 

1. Frequent Itemset Generation
– Generate all itemsets whose support ³ minsup

2. Rule Generation
– Generate high confidence rules from each frequent itemset, 

where each rule is a partitioning of a frequent itemset into 
Left-Hand-Side (LHS) and Right-Hand-Side (RHS)

Frequent itemset: {A,B,C,D}
Rule: AB®CD



Rule Generation
• We have all frequent itemsets, how do we get the 
rules?
• For every frequent itemset S, we find rules of the form          

L ® S – L , where L Ì S, that satisfy the minimum confidence 
requirement

• Example: L = {A,B,C,D} 
• Candidate rules:

A ®BCD,   B ®ACD,   C ®ABD, D ®ABC
AB ®CD,   AC ® BD, AD ® BC, BD ®AC, CD ®AB,

ABC ®D, BCD ®A, BC ®AD, 
• If |L| = k, then there are 2k – 2 candidate association 
rules (ignoring L ® Æ and Æ ® L)



Rule Generation
• How to efficiently generate rules from frequent 
itemsets?
• In general, confidence does not have an anti-monotone 

property
c(ABC ®D) can be larger or smaller than c(AB ®D)

• But confidence of rules generated from the same 
itemset has an anti-monotone property

• e.g., L = {A,B,C,D}:

c(ABC ® D) ³ c(AB ® CD) ³ c(A ® BCD)

• Confidence is anti-monotone w.r.t. number of items on the RHS
of the rule



Rule Generation for Apriori Algorithm
ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Lattice of rules created by the RHS

ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD
Pruned 
Rules

Low 
Confidence 
Rule



Rule Generation for APriori Algorithm
• Candidate rule is generated by merging two rules that 
share the same prefix
in the RHS

• join(CD®AB,BD®AC)
would produce the candidate
rule D ® ABC

• Prune rule D ® ABC if its
subset AD®BC does not have
high confidence

• Essentially we are doing APriori on the RHS 

BD->ACCD->AB

D->ABC


