

This image cannot currently be displayed.

Chapter 1: Introduction

Database System Concepts, 5th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Chapter 1: Introduction

- Purpose of Database Systems
- View of Data
- Database Languages
- Relational Databases
- Database Design
- Object-based and semistructured databases
- Data Storage and Querying
- Transaction Management
- Database Architecture
- Database Users and Administrators
- Overall Structure
- History of Database Systems

Database Management System (DBMS)

- DBMS contains information about a particular enterprise
 - Collection of interrelated data
 - Set of programs to access the data
 - An environment that is both convenient and efficient to use
- Database Applications:
 - Banking: all transactions
 - Airlines: reservations, schedules
 - Universities: registration, grades
 - Sales: customers, products, purchases
 - Online retailers: order tracking, customized recommendations
 - Manufacturing: production, inventory, orders, supply chain
 - Human resources: employee records, salaries, tax deductions
- Databases touch all aspects of our lives

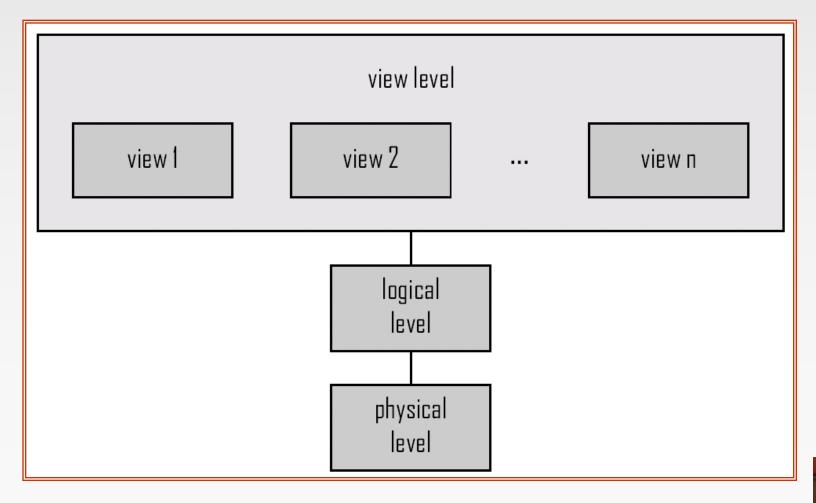
Purpose of Database Systems

- In the early days, database applications were built directly on top of file systems
- Drawbacks of using file systems to store data:
 - Data redundancy and inconsistency
 - Multiple file formats, duplication of information in different files
 - Difficulty in accessing data
 - Need to write a new program to carry out each new task
 - Data isolation multiple files and formats
 - Integrity problems
 - Integrity constraints (e.g. account balance > 0) become "buried" in program code rather than being stated explicitly
 - Hard to add new constraints or change existing ones

Purpose of Database Systems (Cont.)

- Drawbacks of using file systems (cont.)
 - Atomicity of updates
 - Failures may leave database in an inconsistent state with partial updates carried out
 - Example: Transfer of funds from one account to another should either complete or not happen at all
 - Concurrent access by multiple users
 - Concurrent accessed needed for performance
 - Uncontrolled concurrent accesses can lead to inconsistencies
 - Example: Two people reading a balance and updating it at the same time
 - Security problems
 - Hard to provide user access to some, but not all, data
- Database systems offer solutions to all the above problems

Levels of Abstraction


- Physical level: describes how a record (e.g., customer) is stored.
- Logical level: describes data stored in database, and the relationships among the data.

■ View level: application programs hide details of data types. Views can also hide information (such as an employee's salary) for security purposes.

View of Data

An architecture for a database system

Instances and Schemas

- Similar to types and variables in programming languages
- Schema the logical structure of the database
 - Example: The database consists of information about a set of customers and accounts and the relationship between them)
 - Analogous to type information of a variable in a program
 - Physical schema: database design at the physical level
 - Logical schema: database design at the logical level
- Instance the actual content of the database at a particular point in time
 - Analogous to the value of a variable
- Physical Data Independence the ability to modify the physical schema without changing the logical schema
 - Applications depend on the logical schema
 - In general, the interfaces between the various levels and components should be well defined so that changes in some parts do not seriously influence others.

Data Models

- A collection of tools for describing
 - Data
 - Data relationships
 - Data semantics
 - Data constraints
- Relational model
- Entity-Relationship data model (mainly for database design)
- Object-based data models (Object-oriented and Object-relational)
- Semistructured data model (XML)
- Other older models:
 - Network model
 - Hierarchical model

Data Manipulation Language (DML)

- Language for accessing and manipulating the data organized by the appropriate data model
 - DML also known as query language
- SQL is the most widely used query language

Data Definition Language (DDL)

Specification notation for defining the database schema

```
Example: create table account (

account-number char(10),

balance integer)
```

- DDL compiler generates a set of tables stored in a data dictionary
- Data dictionary contains metadata (i.e., data about data)
 - Database schema
 - Data storage and definition language
 - Specifies the storage structure and access methods used
 - Integrity constraints
 - Domain constraints
 - Referential integrity (references constraint in SQL)
 - Assertions
 - Authorization

Relational Model

Example of tabular data in the relational model

Attributes	

customer_id	customer_name	customer_street	customer_city	account_number
192-83-7465	Johnson	12 Alma St.	Palo Alto	A-101
192-83-7465	Johnson	12 Alma St.	Palo Alto	A-201
677-89-9011	Hayes	3 Main St.	Harrison	A-102
182-73-6091	Turner	123 Putnam St.	Stamford	A-305
321-12-3123	Jones	100 Main St.	Harrison	A-217
336-66-9999	Lindsay	175 Park Ave.	Pittsfield	A-222
019-28-3746	Smith	72 North St.	Rye	A-201

A Sample Relational Database

customer_id	customer_name	сиѕ	tomer_stre	et	customer_city	
192-83-7465	Johnson	12 Alma St.			Palo Alto	
677-89-9011	Hayes	3 M	∕Iain St.		Harrison	
182-73-6091	Turner	123	123 Putnam Ave.		Stamford	
321-12-3123	Jones	100	100 Main St.		Harrison	
336-66-9999	Lindsay	175	Park Ave.		Pittsfield	
019-28-3746	Smith	72 N	Jorth St.		Rye	
(a) The <i>customer</i> table						
	account_n	ıumber	balance			
	A-10	1	500			
	A-215		700			
	A-102		400			
	A-305		350			
	A-20		900			
	A-21		750			
	A-22		700			
(b) The account table						
customer_id		accor	ınt_numbe	r		
	192-83-7465		A-101			
192-83-7465			A-201			
	019-28-3746	1	A-215			
677-89-9011			A-102			
182-73-6091		A-305				
	321-12-3123	1	A-217			
	336-66-9999	1	A-222			
	019-28-3746		A-201			

(c) The depositor table

SQL

- SQL: widely used non-procedural language
 - Example: Find the name of the customer with customer-id 192-83-7465

select *customer.customer_name*

from customer

where *customer.customer_id* = '192-83-7465'

 Example: Find the balances of all accounts held by the customer with customer-id 192-83-7465

select account.balance

from depositor, account

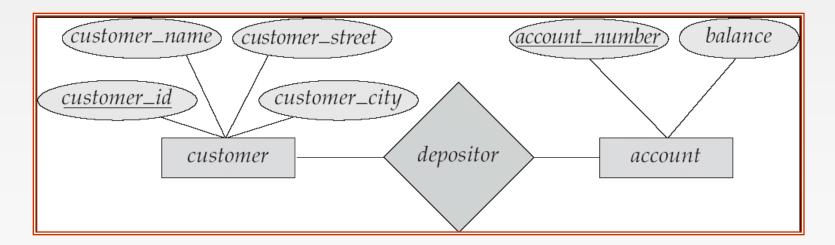
where depositor.customer_id = '192-83-7465' and

depositor.account_number = account.account_number

- Application programs generally access databases through one of
 - Language extensions to allow embedded SQL
 - Application program interface (e.g., ODBC/JDBC) which allow SQL queries to be sent to a database

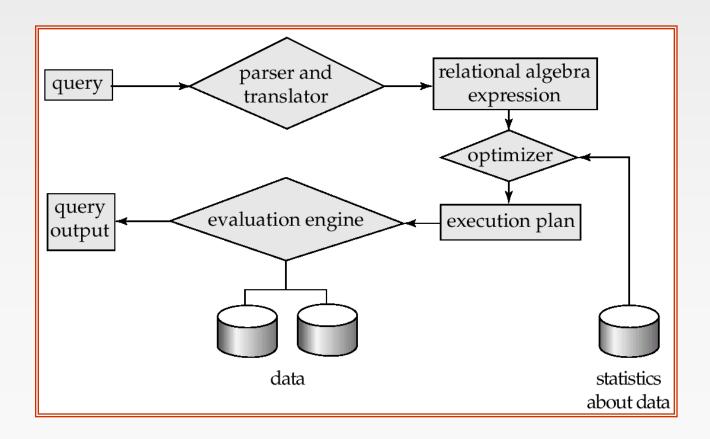
Database Design

The process of designing the general structure of the database:


- Logical Design Deciding on the database schema. Database design requires that we find a "good" collection of relation schemas.
 - Business decision What attributes should we record in the database?
 - Computer Science decision What relation schemas should we have and how should the attributes be distributed among the various relation schemas?
- Physical Design Deciding on the physical layout of the database

The Entity-Relationship Model

- Models an enterprise as a collection of entities and relationships
 - Entity: a "thing" or "object" in the enterprise that is distinguishable from other objects
 - Described by a set of attributes
 - Relationship: an association among several entities
- Represented diagrammatically by an *entity-relationship diagram*:



Query Processing

- 1. Parsing and translation
- 2. Optimization
- 3. Evaluation

Query Processing (Cont.)

- Alternative ways of evaluating a given query
 - Equivalent expressions
 - Different algorithms for each operation
- Cost difference between a good and a bad way of evaluating a query can be enormous
- Need to estimate the cost of operations
 - Depends critically on statistical information about relations which the database must maintain
 - Need to estimate statistics for intermediate results to compute cost of complex expressions

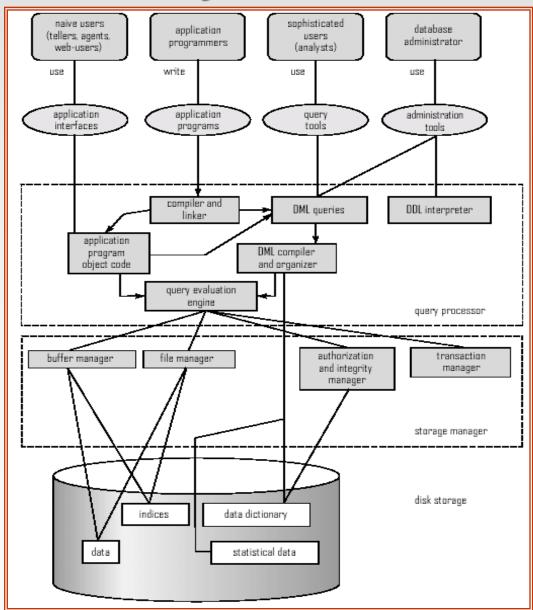
Transaction Management

- A transaction is a collection of operations that performs a single logical function in a database application
- Transaction-management component ensures that the database remains in a consistent (correct) state despite system failures (e.g., power failures and operating system crashes) and transaction failures.
- Concurrency-control manager controls the interaction among the concurrent transactions, to ensure the consistency of the database.

Database Architecture

The architecture of a database systems is greatly influenced by the underlying computer system on which the database is running:

- Centralized
- Client-server
- Parallel (multi-processor)
- Distributed


Database Administrator

- Coordinates all the activities of the database system; the database administrator has a good understanding of the enterprise's information resources and needs.
- Database administrator's duties include:
 - Schema definition
 - Storage structure and access method definition
 - Schema and physical organization modification
 - Granting user authority to access the database
 - Specifying integrity constraints
 - Acting as liaison with users
 - Monitoring performance and responding to changes in requirements

Overall System Structure

History of Database Systems

- 1950s and early 1960s:
 - Data processing using magnetic tapes for storage
 - Tapes provide only sequential access
 - Punched cards for input
- Late 1960s and 1970s:
 - Hard disks allow direct access to data
 - Network and hierarchical data models in widespread use
 - Ted Codd defines the relational data model
 - Would win the ACM Turing Award for this work
 - IBM Research begins System R prototype
 - UC Berkeley begins Ingres prototype
 - High-performance (for the era) transaction processing

History (cont.)

1980s:

- Research relational prototypes evolve into commercial systems
 - SQL becomes industrial standard
- Parallel and distributed database systems
- Object-oriented database systems

1990s:

- Large decision support and data-mining applications
- Large multi-terabyte data warehouses
- Emergence of Web commerce

2000s:

- XML and XQuery standards
- Automated database administration

This image cannot currently be displayed.

End of Chapter 1

Database System Concepts, 5th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

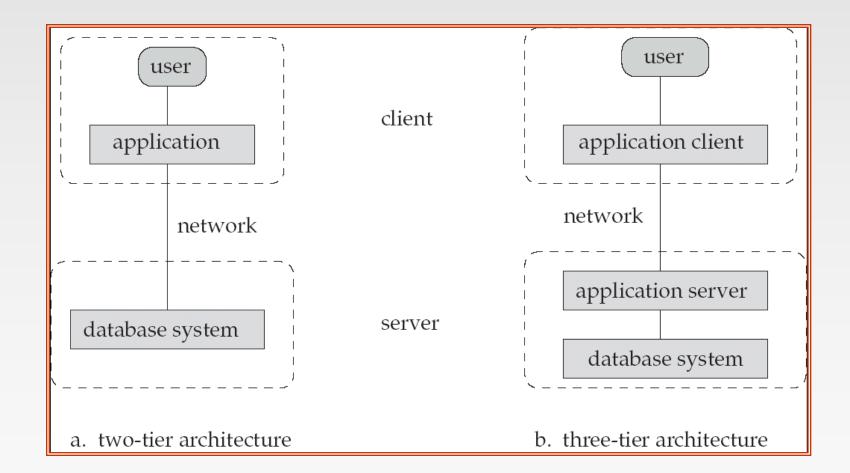


Figure 1.4

customer_id	account_number	balance
192-83-7465	A-101	500
192-83-7465	A-201	900
019-28-3746	A-215	700
677-89-9011	A-102	400
182-73-6091	A-305	350
321-12-3123	A-217	750
336-66-9999	A-222	700
019-28-3746	A-201	900

Figure 1.7

