CSCI 340: Computational Models

Context-Free Languages

R

Chapter 17 Department of Computer Science

Closure Properties of Context-Free Languages

- Union, Product, Kleene closure, complement, and intersection of regular languages are *all regular*
- What operations of context-free languages are still context-free?

Closure Properties of Context-Free Languages

- Union, Product, Kleene closure, complement, and intersection of regular languages are *all regular*
- What operations of context-free languages are still context-free?
- Union $L_1 + L_2$
- Concatenation L₁L₂
- Kleene closure L_1^*

Union

Theorem

If L_1 and L_2 are context-free languages, then their union, $L_1 + L_2$, is also a context-free language. In other words, the context-free languages are closed under union

Proof (by grammars).

- The CFG for L₁ has start state S rename it S₁
- The CFG for L₂ has start state S rename it S₂
- To avoid collisions with non-terminal states, append 1 if it belonged to the first CFG and 2 if it belonged to the second CFG
- Introduce a new start state, *S* and create the production:

$$S \rightarrow S_1 \mid S_2$$

 All words with derivations starting with S → S₁ belong to L₁ and all words with derivations starting with S → S₂ belong to L₂

Union - Example

Example

Consider the two languages L_1 and L_2 :

*L*₁ be PALINDROME with CFG:

 $S \rightarrow aSa \mid bSb \mid a \mid b \mid \Lambda$

 L_2 be { $a^n b^n$ } with CFG:

 $S \rightarrow aSb \mid \Lambda$

- $L_1 = EVENPALINDROME$
- **2** $L_2 = ODDPALINDROME$

Proof (by Machines).

- *PDA*₁ has a START state
- *PDA*₂ has a START state
- "merge" these two START states together
- Any input string which reaches ACCEPT either went through a path along PDA₁ or PDA₂

Concatenation

Theorem

If L_1 and L_2 are context-free languages, then so is L_1L_2 . In other words, the context-free languages are closed under product

Proof.

- Let *CFG*₁ and *CFG*₂ be context-free grammars that generate *L*₁ and *L*₂ respectively
- Relabel all nonterminals by appending 1 for every nonterminal in *CFG*1 and appending 2 for every nonterminal in *CFG*2
- Create a new production for S:

$$S \rightarrow S_1 S_2$$

- Any word generated by this CFG has a "front" part derived from *S*₁ and a "rear" part derived from *S*₂
- The two sets cannot cross over and interact with each other because the sets of non-terminals are disjoint

Concatenation - Example

Example

Let L_1 be PALINDROME and CFG_1 be

 $S \to aSa \mid bSb \mid a \mid b \mid \Lambda$

Let L_2 be { $a^n b^n$ } and CFG_2 be

 $S \rightarrow aSb \mid \Lambda$

Concatenation - Example

Example

Let L_1 be PALINDROME and CFG_1 be

 $S \rightarrow aSa \mid bSb \mid a \mid b \mid \Lambda$

Let L_2 be { $a^n b^n$ } and CFG_2 be

 $S \rightarrow aSb \mid \Lambda$

But can we prove concatenation with machines?

- Should the TAPE be empty after processing *L*₁?
- Should the STACK be empty after processing *L*₁?

Kleene Closure

Theorem

If L is a context-free language, then L^* is one too. In other words, the context-free languages are closed under the Kleene star.

Proof (by construction).

- Let us start with a CFG for the language L it has start symbol S
- Relabel *S* as *S*₁ (replacing all occurrences)
- Create a new production for non-terminal *S*:

$$S \to S_1 S \mid \Lambda$$

We are able to apply the *S* production exactly once (producing λ), twice (producing exactly what was accepted originally), or *n* times (producing the closure)

$$\mathsf{PALINDROME} = S \rightarrow aSa \mid bSb \mid a \mid b \mid \Lambda$$

Intersection and Complement

Theorem (sort of)

The intersection of two context-free languages may or may not be context-free

Intersection and Complement

Theorem (sort of)

The intersection of two context-free languages may or may not be context-free

Consider two regular languages – then $\{a^n b^n a^m\}$ and $\{a^n b^m a^m\}$

Theorem (sort of)

The complement of two context-free languages may or may not be context-free

Intersection and Complement

Theorem (sort of)

The intersection of two context-free languages may or may not be context-free

Consider two regular languages – then $\{a^n b^n a^m\}$ and $\{a^n b^m a^m\}$

Theorem (sort of)

The complement of two context-free languages may or may not be context-free

Consider a regular language – then consider $(L_1' + L_2')' = L_1 \cap L_2$

Mixing Context-Free and Regular Languages

Claim

The union of a context-free language and a regular language must be context-free because the regular language itself is context-free.

- PALINDROME (nonregular context-free)
- **2** $(\mathbf{a} + \mathbf{b})^*$ (regular and contains PALINDROME)

Mixing Context-Free and Regular Languages

Claim

The union of a context-free language and a regular language must be context-free because the regular language itself is context-free.

Example

- PALINDROME (nonregular context-free)
- **2** $(\mathbf{a} + \mathbf{b})^*$ (regular and contains PALINDROME)

The union is regular

- **a**^{*} (regular)
- PALINDROME (nonregular context-free and contains a*)

Mixing Context-Free and Regular Languages

Claim

The union of a context-free language and a regular language must be context-free because the regular language itself is context-free.

Example

- PALINDROME (nonregular context-free)
- **2** $(\mathbf{a} + \mathbf{b})^*$ (regular and contains PALINDROME)

The union is regular

Example

a^{*} (regular)

PALINDROME (nonregular context-free and contains a*)

The union is nonregular context-free

Intersection of CFLs and RLs

Theorem

The intersection of a context-free language and a regular language is always context-free

Homework 9b

- (4pt) Using (1) the theorems on slides 2, 5, and 7; (2) a little ingenuity; and (3) the recursive definition of regular languages provide a new proof that all regular languages are context-free
- 6 (2pt ea) Find CFGs for the following languages:
 - All words that start with *a* or are of the form *aⁿbⁿ*
 - All words in EVEN-EVEN*
 - All words that start with ODD-PALINDROME and end with EVEN-PALINDROME
- (4pt) Find a CFG for $a^x b^y a^z$ where x + z = y
- (2pt ea) Which of the following are context-free?
 - EQUAL $\cap \{ a^n b^n a^n \}$
 - EVEN-EVEN' ∩ PALINDROME
 - { $a^n b^n$ }' \cap PALINDROME