

CSCI 340: Computational Models
Context-Free Languages

Closure Properties of Context-Free Languages

- Union, Product, Kleene closure, complement, and intersection of regular languages are all regular
- What operations of context-free languages are still context-free?

Closure Properties of Context-Free Languages

- Union, Product, Kleene closure, complement, and intersection of regular languages are all regular
- What operations of context-free languages are still context-free?
- Union $L_{1}+L_{2}$
- Concatenation $L_{1} L_{2}$
- Kleene closure $L_{1}{ }^{*}$

Union

Theorem

If L_{1} and L_{2} are context-free languages, then their union, $L_{1}+L_{2}$, is also a context-free language. In other words, the context-free languages are closed under union

Proof (by grammars).

- The CFG for L_{1} has start state S - rename it S_{1}
- The CFG for L_{2} has start state S - rename it S_{2}
- To avoid collisions with non-terminal states, append ${ }_{1}$ if it belonged to the first CFG and ${ }_{2}$ if it belonged to the second CFG
- Introduce a new start state, S and create the production:

$$
S \rightarrow S_{1} \mid S_{2}
$$

- All words with derivations starting with $S \rightarrow S_{1}$ belong to L_{1} and all words with derivations starting with $S \rightarrow S_{2}$ belong to L_{2}

Union - Example

Example

Consider the two languages L_{1} and L_{2} :
L_{1} be PALINDROME with CFG:

$$
S \rightarrow a S a|b S b| a|b| \Lambda
$$

L_{2} be $\left\{a^{n} b^{n}\right\}$ with CFG:

$$
S \rightarrow a S b \mid \Lambda
$$

Example

(1) $L_{1}=$ EVENPALINDROME
(2) $L_{2}=$ ODDPALINDROME

Union - Alternative Proof

Proof (by Machines).

- $P D A_{1}$ has a START state
- $P D A_{2}$ has a START state
- "merge" these two START states together
- Any input string which reaches ACCEPT either went through a path along $P D A_{1}$ or $P D A_{2}$

Concatenation

Theorem

If L_{1} and L_{2} are context-free languages, then so is $L_{1} L_{2}$. In other words, the context-free languages are closed under product

Proof.

- Let $C F G_{1}$ and $C F G_{2}$ be context-free grammars that generate L_{1} and L_{2} respectively
- Relabel all nonterminals by appending ${ }_{1}$ for every nonterminal in $C F G_{1}$ and appending ${ }_{2}$ for every nonterminal in CFG_{2}
- Create a new production for S :

$$
S \rightarrow S_{1} S_{2}
$$

- Any word generated by this CFG has a "front" part derived from S_{1} and a "rear" part derived from S_{2}
- The two sets cannot cross over and interact with each other because the sets of non-terminals are disjoint

Concatenation - Example

Example

Let L_{1} be PALINDROME and $C F G_{1}$ be

$$
S \rightarrow a S a|b S b| a|b| \Lambda
$$

Let L_{2} be $\left\{a^{n} b^{n}\right\}$ and $C F G_{2}$ be

$$
S \rightarrow a S b \mid \Lambda
$$

Concatenation - Example

Example

Let L_{1} be PALINDROME and $C F G_{1}$ be

$$
S \rightarrow a S a|b S b| a|b| \Lambda
$$

Let L_{2} be $\left\{a^{n} b^{n}\right\}$ and $C F G_{2}$ be

$$
S \rightarrow a S b \mid \Lambda
$$

But can we prove concatenation with machines?

- Should the TAPE be empty after processing L_{1} ?
- Should the STACK be empty after processing L_{1} ?

Kleene Closure

Theorem

If L is a context-free language, then L^{*} is one too. In other words, the context-free languages are closed under the Kleene star.

Proof (by construction).

- Let us start with a CFG for the language L - it has start symbol S
- Relabel S as S_{1} (replacing all occurrences)
- Create a new production for non-terminal S :

$$
S \rightarrow S_{1} S \mid \Lambda
$$

- We are able to apply the S production exactly once (producing λ), twice (producing exactly what was accepted originally), or n times (producing the closure)

Example

PALINDROME $=S \rightarrow a S a|b S b| a|b| \Lambda$

Intersection and Complement

Theorem (sort of)
The intersection of two context-free languages may or may not be context-free

Intersection and Complement

Theorem (sort of)

The intersection of two context-free languages may or may not be context-free

Consider two regular languages - then $\left\{a^{n} b^{n} a^{m}\right\}$ and $\left\{a^{n} b^{m} a^{m}\right\}$

Theorem (sort of)

The complement of two context-free languages may or may not be context-free

Intersection and Complement

Theorem (sort of)

The intersection of two context-free languages may or may not be context-free

Consider two regular languages - then $\left\{a^{n} b^{n} a^{m}\right\}$ and $\left\{a^{n} b^{m} a^{m}\right\}$

Theorem (sort of)

The complement of two context-free languages may or may not be context-free

Consider a regular language - then consider $\left(L_{1}^{\prime}+L_{2}{ }^{\prime}\right)^{\prime}=L_{1} \cap L_{2}$

Mixing Context-Free and Regular Languages

Claim

The union of a context-free language and a regular language must be context-free because the regular language itself is context-free.

Example

(1) PALINDROME (nonregular context-free)

2 $(\mathbf{a}+\mathbf{b})^{*}$ (regular and contains PALINDROME)

Mixing Context-Free and Regular Languages

Claim

The union of a context-free language and a regular language must be context-free because the regular language itself is context-free.

Example

(1) PALINDROME (nonregular context-free)
(2) $(\mathbf{a}+\mathbf{b})^{*}$ (regular and contains PALINDROME)

The union is regular

Example

(1) \mathbf{a}^{*} (regular)
(2) PALINDROME (nonregular context-free and contains \mathbf{a}^{*})

Mixing Context-Free and Regular Languages

Claim

The union of a context-free language and a regular language must be context-free because the regular language itself is context-free.

Example

(1) PALINDROME (nonregular context-free)
(2) $(\mathbf{a}+\mathbf{b})^{*}$ (regular and contains PALINDROME)

The union is regular

Example

(1) \mathbf{a}^{*} (regular)
(2) PALINDROME (nonregular context-free and contains \mathbf{a}^{*})

The union is nonregular context-free

Intersection of CFLs and RLs

Theorem

The intersection of a context-free language and a regular language is always context-free

Homework 9b

(5) (4pt) Using (1) the theorems on slides 2, 5, and 7; (2) a little ingenuity; and (3) the recursive definition of regular languages provide a new proof that all regular languages are context-free
(6) (2pt ea) Find CFGs for the following languages:

- All words that start with a or are of the form $a^{n} b^{n}$
- All words in EVEN-EVEN*
- All words that start with ODD-PALINDROME and end with EVEN-PALINDROME
(7) (4pt) Find a CFG for $a^{x} b^{y} a^{z}$ where $x+z=y$

8 (2pt ea) Which of the following are context-free?

- EQUAL $\cap\left\{a^{n} b^{n} a^{n}\right\}$
- EVEN-EVEN' \cap PALINDROME
- $\left\{a^{n} b^{n}\right\}^{\prime} \cap$ PALINDROME

