slides originally by Dr. Richard Burns, modified by Dr. Stephanie Schwartz

DATA PREPROCESSING

CSCI 452: Data Mining

Topics Covered

- Handling Missing Data
- Reclassifying Categorical Variables
- Binning Numerical Variables
- When to Remove Variables

Handling Missing Data

Motivation: Will frequently encounter missing values, especially in big data

Lots of fields, lots of observations

Question: how to handle missing data?

How much data is missing?

- □ Suppose...
 - Dataset of 30 variables
 - 5% of data is missing
 - Missing values are spread evenly throughout data
- Then 80% of records would have at least one missing value

What to do? The options:

- 1. Omit records with any missing values (bad)
- 2. Replace missing value with some constant specified by analyst
- 3. Replace missing value with mean, median, or mode
- 4. Replace missing value with value generated at random from the observed variable distribution
- 5. Replace missing value with *imputed values*, based on other characteristics of the record

Replacing missing value with <u>imputed</u> <u>values</u>

"The value of an item for which actual values are not available. Imputed values are a logical or implicit value for an item, or time set, wherein a "true" value has yet to be ascertained. It would be a best guess estimate, in order to accurately estimate a larger set of values or series of data points."

Imputation of Missing Data

- 1. Impute the values of the variable with the fewest missing values.
 - Use only the variables with no missing values as predictors.
- 2. Impute the values of the variables with the next fewest missing values.
- 3. Repeat as necessary.

Reclassifying Categorical Variables

- Sometimes a categorical variable will contain too many factors to be easily analyzable
 - Logistic regression and decision trees sometimes yield poor predictive performance in this case
- **Example:** state field could contain 50 different values
 - Solution #1: reclassify state into its region: {NorthEast, NorthWest, Central, West, ...}
 - Solution #2: reclassify state by its economic level: {WealthyStates, MiddleStates, PoorestStates}
 - Up to the analyst to appropriately reclassify

When to Remove Variables

- Variables that will not help the analysis should be removed
 - Unary variables: take on a single value
 - *Example:* gender variable for students at an all-girls school
 - Variables that are nearly unary
 - Example: gender of football athletes at elementary school
 99.95% of the players are male
 - Some data mining algorithms may treat the variable as unary
 Not enough data to investigate the female players anyway...

When (Not) to Remove Variables

□ 90% of the values are missing

- Are the values that are present <u>representative</u> or <u>not</u>?
- If the present values are representative, then either (1) remove the variable or (2) impute the values.
- If the present values are non-representative, their presence adds value.
 - Scenario: donation_dollars field in a self-reported survey
 - Possibility: those who donate a lot are more inclined to report their donation
 - Could make the variable binary: donation_flag

When (Not) to Remove Variables

- Strong correlation between two variables
 - Inclusion of correlated variables may "double-count" a particular aspect of the analysis, depending on the machine learning technique used.
 - **Example:** precipitation and people on a beach
 - Strategy #1: remove one of the two correlated variables
 - Strategy #2: use PCA to transform the variables (Principal Component Analysis)

ID Fields

- ID fields have a different value for each record
- Won't be helpful in predictive analysis
 - If they are, the relationship is usually spurious
- **Recommended Approach**:
 - Don't include ID field in modeling
 - But keep it in the dataset to differentiate between records

Aggregation

- Combining two or more attributes into a single attribute
 Or combining two or more objects into a single object
 Purpose:
 - 1. Data reduction: reduce # of attributes/objects
 - 2. Change of scale: high-level vs. low-level
 - 3. More "stability": aggregated data has less variability

Aggregation – Data Reduction

- □ "less is more" in some research questions
- **Example**:
 - Combining individual sales transactions into aggregate sales
 - Action: remove "store location" and "item"
 - Sum sales for a day
- Motivations:
 - Higher-level view of data?
 - Less memory and processing time

Aggregation – Data Reduction

Transaction ID	ltem	Store Location	Date	Price	
•••	•••	•••	•••	•••	
101123	Watch	Chicago	09/06/04	\$25.99	•••
101123	Battery	Chicago	09/06/04	\$5.99	•••
101124	Shoes	Minneapolis	09/06/04	\$75.00	•••
•••	•••		•••	•••	

Aggregation – Change in Variability

Less variability at "higher-level" view

Variation of Precipitation in Australia

Binarization

- Mapping a categorical attribute to a set of attributes that are binary
- □ Assuming an ordinal attribute:
 - ({Small, Medium, Large})
 - Must maintain ordinal relationship

Binarization

Question: How many binary variables are required to represent 5 categorical values?

Categorical Value	Integer value	X 1	X ₂	X ₃
Awful	0	0	0	0
Poor	1	0	0	1
ОК	2	0	1	0
Good	3	0	1	1
Great	4	1	0	0

Answer: 3 binary variables

 $\overline{\log_2(x)}$ = ceiling of $\log_2(x) = \overline{\log_2(3)} = 3$

Question: any issues with this approach?

- <u>Unintended relationships</u>
 - X₂ and X₃ are now correlated because "good" is encoded using both attributes

Binarization

Categorical Value	Integer value	X 1	X ₂	X ₃	X ₄	X ₅
Awful	0	1	0	0	0	0
Poor	1	0	1	0	0	0
ОК	2	0	0	1	0	0
Good	3	0	0	0	1	0
Great	4	0	0	0	0	1

- Binary attributes, where only the presence of 1 is important
- One binary attribute for each categorical value
- □ Be Careful:
 - Number of resulting attributes may become too large

Discretization

Discretization: Mapping / "binning" continuous attributes to categorical attributes

Binning Numerical Variables

- Some algorithms prefer categorical variables rather than continuous variables
 - **Example:** decision trees
- Need to discretize numerical variable into <u>bins</u>
 - Example: "binning" the numerical predictor variable house value into {Low, Medium, High}

Methods for Binning Numeric Predictor Variables

- 1. Equal width binning
- 2. Equal frequency binning
- 3. Binning by clustering
- 4. Binning based on predictive value

Equal Width Binning

- Divides the numerical predictor into k categories of equal width
 - **k** is chosen by the analyst
- Not usually recommended
 - Can be greatly affected by outliers

Equal Width

- 4 classes in target attribute (indicated by color)
- x-axis: value of some continuous predictor variable that we wish to discretize
- Two outliers (at x=0 and x=20)

• *k*=4 chosen by analyst

Equal Frequency Binning

- Divides the numerical predictor into k categories, each having n/k records,
 - Where there is *n* records
- Assumes that each category is equally likely
 - Assumption is usually not warranted

Equal Frequency

- 4 classes in target attribute (indicated by color)
- x-axis: value of some continuous predictor variable that we wish to discretize
- Two outliers (at x=0 and x=20)

- k=4 chosen by analyst
- n/k observations in each bin
 - 100/4=25 observations in each bin

Binning by Clustering

- Using a "clustering" algorithm to learn "optimal" binning
 - Example: k-means clustering
- Will be covered later in course.

K-Means

- 4 classes in target attribute (indicated by color)
- x-axis: value of some continuous predictor variable that we wish to discretize
- Two outliers (at x=0 and x=20)

K-Means

- k=4 chosen by analyst
- "Seems to work better"

Binning based on Predictive Value

- Partitions the numerical predictor based on the effect each partition has on the value of the target variable
- □ (Previous three methods ignored the target variable.)
- □ <u>Supervised</u> vs. <u>Unsupervised</u>

Supervised vs. Unsupervised

- <u>Unsupervised</u>: discretization of observation based solely on data point
 - No knowledge of class label
- Supervised: class label is known and is used
- Unsupervised discretization usually better than no discretization.
- Supervised discretization sometimes produces better results.

Supervised Discretization

- Split continuous variable in such a way to maximize the "purity of the intervals"
- Entropy:

$$e_i = -\sum_{i=1}^k p_{ij} \log_2 p_{ij}$$
$$p_{ij} = \frac{m_{ij}}{m_i}$$

$$k = #$$
 of class labels

 $m_i = \#$ of observations in the *i*th interval

 $m_{ij} = \#$ of values of class *j* in interval *i*

 e_i = entropy of interval *i*

Total entropy: weighted average of the individual interval entropies

Interval containing only values of one class

2nd and 3rd intervals are perfectly pure

 $Entropy_{2nd \text{ interval}} = \frac{0}{2}\log_2\frac{0}{2} + \frac{2}{2}\log_2\frac{2}{2} + \frac{0}{2}\log_2\frac{0}{2} = 0 + 0 + 0 = 0$ Interval containing a mix of class labels $Entropy_{1st \text{ interval}} = \frac{3}{5}\log_2\frac{3}{5} + \frac{1}{5}\log_2\frac{1}{5} + \frac{1}{5}\log_2\frac{1}{5} = -.442 - .464 - .464 = 1.37$

Simple Supervised Discretization Algorithm

- Bisect initial values so that resulting 2 intervals give minimal entropy
- 2. Repeat with another interval, (typically choosing the interval with the worst/highest entropy)
- 3. Stop when user-specified number of intervals is reached (or some other stopping criteria)

Supervised Discretization

Training

- Class labels (of target variable) are used for discretization of predictive variable
 Bins / "Bin definitions"
 - are formed

Testing

- Discretize predictive variable into bin, as defined from training
- Use model learned from training data to predict class label

References

Discovering Knowledge in Data, 2nd edition, Larose et al.

□ Introduction to Data Mining, 1st edition, Tan et al.