
CSCI 340: Computational Models

Non-Context-Free Languages

Chapter 16 Department of Computer Science

Self-Embeddedness

Theorem
Let G be a CFG in Chomsky Normal Form. Let us call the production of
the form:

Nonterminal → Nonterminal Nonterminal

live and the productions of the form

Nonterminal → terminal

dead. If we restrict to using live productions at most once each, we can
generate only finitely many words.

1 / 28

Self-Embeddedness

• Every time we apply a live production, we increase the number
of nonterminals by one
• Every time we apply a dead production, we decrease the

number of nonterminals by one
• We will always apply one more dead production than live

productions.
• Show the self-embeddedness of any word generated by S

Example

S → AZ

Z → BB

B→ ZA

A→ a

B→ b

2 / 28

Self-Embeddedness

Note
When we expand the productions of a grammar in CNF, we will
always produce a binary tree as our derivation tree.

Because of this property, we can theoretically construct a complete
binary tree

Theorem
If G is a CFG in CNF that has p live productions and q dead
productions, and if w is a word generated by G that has more than 2p

le�ers in it, then somewhere in every derivation tree for w there is an
example of some nonterminal (call it Z) being used twice where the
second Z is descended from the first Z.

The live productions indicate the maximum depth of the tree

3 / 28

Self-Embeddedness

Note
When we expand the productions of a grammar in CNF, we will
always produce a binary tree as our derivation tree.

Because of this property, we can theoretically construct a complete
binary tree

Theorem
If G is a CFG in CNF that has p live productions and q dead
productions, and if w is a word generated by G that has more than 2p

le�ers in it, then somewhere in every derivation tree for w there is an
example of some nonterminal (call it Z) being used twice where the
second Z is descended from the first Z.

The live productions indicate the maximum depth of the tree

3 / 28

Self-Embeddedness

Note
When we expand the productions of a grammar in CNF, we will
always produce a binary tree as our derivation tree.

Because of this property, we can theoretically construct a complete
binary tree

Theorem
If G is a CFG in CNF that has p live productions and q dead
productions, and if w is a word generated by G that has more than 2p

le�ers in it, then somewhere in every derivation tree for w there is an
example of some nonterminal (call it Z) being used twice where the
second Z is descended from the first Z.

The live productions indicate the maximum depth of the tree

3 / 28

Self-Embeddedness

Definition
In a given derivation of a word in a given CFG, a nonterminal is said
to be self-embedded if it ever occurs as a tree descendent of itself

Example

CFG for NONNULLPALINDROME — derivation for aabaa

S → AX

X → SA

S → BY

Y → SB

S → a

S → b

S → AA

S → BB

A→ a

B→ b

4 / 28

Self Embeddedness

Definition
Let us introduce the notation

∗
⇒ to stand for the phrase “can

eventually produce”. It is used in the following context:

Suppose in a certain CFG the working string S1 can produce the
working string S2, which in turn can produce S3 . . . Sn

We can then write:

S1
∗
⇒ Sn

For NONNULLPALINDROME, we can state the following:

X
∗
⇒ anXan

5 / 28

Self Embeddedness

Definition
Let us introduce the notation

∗
⇒ to stand for the phrase “can

eventually produce”. It is used in the following context:

Suppose in a certain CFG the working string S1 can produce the
working string S2, which in turn can produce S3 . . . Sn

We can then write:

S1
∗
⇒ Sn

For NONNULLPALINDROME, we can state the following:

X
∗
⇒ anXan

5 / 28

Non-Context-Free Languages

• It turns out that not all languages are context-free.
• The simplest example of a non-context-free language is

{anbncn | n ≥ 0}.

• To process this would require two stacks.

6 / 28

The Pumping Lemma

Theorem (The Pumping Lemma for Context-Free Grammars)

If L is a context-free language then there exists an integer p such that if
any string s ∈ L has length at least p, then s may be divided into five
substrings s = uvxyz such that
• |vy | > 0,
• |vxy | ≤ p,
• uv ixy iz ∈ L for all i ≥ 0.

7 / 28

The Pumping Lemma Parts

• u — the substring of all the le�ers of w generated to the “le�” of
the derivation we care about
• v — the substring of all the le�ers of w descended from the root

of the derivation we care about but to the le� of the
self-embedded state
• x — the substring of all the le�ers of w descended from the
self-embedded state
• y — the substring of all the le�ers of w descended from the right

of the self-embedded state to the end of the derivation we
care about
• z — the substring of all the le�ers of w generated to the “right”

of the derivation we care about

8 / 28

The Proof

• The proof is somewhat similar to the proof of the Pumping
Lemma for Regular Languages except that it is based on a
grammar rather than a machine.
• But first, an example. . .

9 / 28

An Example

Example

• Let L = {anbncn | n ≥ 0}.
• We will use the Pumping Lemma to show that L is not

context-free.

10 / 28

An Example

Proof.

• Suppose L is context-free.
• Then let p be the “pumping length” of L (for CFLs).
• Let s = apbpcp.
• Then s = uvxyz such that |vy | > 0, |vxy | ≤ p, and uv ixy iz ∈ L.
• We will show that this is not possible.

�

11 / 28

An Example

Proof.

• vxy is the “middle part” of uvxyz and it has length at most p.
• Therefore, it consists of

Case 1: All a’s,
Case 2: Some a’s followed by some b’s,
Case 3: All b’s,
Case 4: Some b’s followed by some c’s, or
Case 5: All c’s.

�

12 / 28

An Example

Proof.

• It is enough to consider the first two cases.
• The other three cases are similar.
• Case 1: Suppose vxy consists of all a’s.

• Then v = ak and y = am for some k, m, not both 0.
• So uv2xy2z = ap+k+mbpcp, which is not in L.
• This is a contradiction.

�

13 / 28

An Example

Proof.
• Case 2: vxy consists of some a’s followed by some b’s.

• There are three possibilities:
• v is all a’s and y is all b’s,
• v is all a’s and y is some a’s followed by some b’s,
• v is some a’s followed by some b’s and y is all b’s.

�

14 / 28

An Example

Proof.
• Case 2, continued. . .

• It doesn’t really ma�er which is the case because both v and y
get pumped up.

• Let k be the number of a’s and m be the number of b’s altogether
in vy , m and k are not both 0 (but possibly m = k).

• So uv2xy2z will contain p + k a’s and p +m b’s, but only p c’s.
• So uv2xy2z < L.
• This is a contradiction.

• Cases 3, 4, and 5 are similar.
• Therefore, L is not context-free.

�

15 / 28

The Idea Behind the Proof

• If a CFL contains a string w with a su�iciently long derivation

S
∗
⇒ w,

then some variable A must appear more than once in the
derivation.
• That is, we must have

S
∗
⇒ uAz

∗
⇒ uvAyz

∗
⇒ uvxyz,

for some strings u, v , x , y , and z .

16 / 28

The Idea Behind the Proof

• Thus, A
∗
⇒ vAy and A

∗
⇒ x .

• We may repeat the derivation

A
∗
⇒ vAy

as many times as we like (including zero times), producing
strings uvnxynz , for any n ≥ 0.

17 / 28

The Proof

Proof.

• Let b be the largest number of symbols on the right-hand side of
any grammar rule. (Assume b ≥ 2.)
• Let h be the height of the derivation tree of a string s.
• Then s can contain at most bh symbols.
• Equivalently, if s contains more than bh symbols, then the height

of the derivation tree of s must be more h.

�

18 / 28

The Proof

Proof.

• Now |V | is the number of variables in the grammar of L.
• So if a string in L has a length greater than b |V |+1, then the

height of its derivation tree must be more than |V | + 1.
• So let p = b |V |+1 and suppose that a string s ∈ L has length at

least p.

�

19 / 28

The Proof

Proof.

• Consider the longest path through the derivation tree of s.
• It has length at least |V | + 1.
• That path has |V | + 2 nodes on it, counting the root node S and

the leaf node, which is a terminal.

�

20 / 28

The Proof

Proof.

• Thus, |V | + 1 of the nodes are variables.
• So one of them must be repeated.
• As we follow the longest path back from leaf to root, let A be the

first variable that repeats.
• Now consider these two occurrences of A along the longest path.

�

21 / 28

The Proof

22 / 28

The Proof

Proof.

• The “middle part” of this tree, the part that produces

A
∗
⇒ vAy,

may be repeated as many times as desired.

�

23 / 28

The Proof

24 / 28

The Proof

Proof.

• Therefore, the strings uv2xy2z , uv3xy3z , etc. can also be derived.
• So can the string uxz .
• Furthermore, we may assume that this was the shortest

derivation of s.
• It follows that v and y cannot both be empty strings.
• If they were, then the middle part of the derivation would be

A
∗
⇒ A,

which could be eliminated.
• Thus, |vy | > 0.

�

25 / 28

The Proof

Proof, conclusion.

• Finally, we must show that |vxy | ≤ p.
• The subtree rooted at the second-to-last A has height at most
|V | + 1.

• So the string vxy has at most b |V |+1 = p symbols.

�

26 / 28

An Example

Example

• Let Σ = {a, b}.
• Show that the language

{ww | w ∈ Σ∗}

is not context-free.
• Use s = apbpapbp.

27 / 28

Homework 9a

1 Consider the grammar for the language L = { anbn }

1 (5pts) Chomsky-ize this grammar
2 (5pts) Find all derivation trees that do not have self-embedded

non-terminals

2 (5pts) Why does the pumping lemma argument not show the
language PALINDROME is not context free? Show how v and y
can be found such that w = uvnxynz are also in PALINDROME
no ma�er what w is.

3 (5pts) How would you go about proving the following theorem?
If L is a language over the one-le�er alphabet Σ = { a } and L
can be shown to be non-regular using the pumping lemma for
regular languages, then L can be shown to be non-context-free
using the pumping lemma for context-free languages.

28 / 28

