

Non-Context-Free Languages

R

Chapter 16 Department of Computer Science

Theorem

Let G be a CFG in Chomsky Normal Form. Let us call the production of the form:

 $Nonterminal \rightarrow Nonterminal Nonterminal$

live and the productions of the form

Nonterminal \rightarrow terminal

dead. If we restrict to using live productions at most once each, we can generate only finitely many words.

- Every time we apply a **live** production, we increase the number of nonterminals by one
- Every time we apply a **dead** production, we decrease the number of nonterminals by one
- We will always apply one more **dead** production than **live** productions.
- Show the self-embeddedness of any word generated by S

Example

S	\rightarrow	ΑZ
Ζ	\rightarrow	BB
В	\rightarrow	ZA
A	\rightarrow	а
В	\rightarrow	b

Note

When we expand the productions of a grammar in CNF, we will always produce a **binary tree** as our *derivation tree*.

Because of this property, we can theoretically construct a *complete* binary tree

Note

When we expand the productions of a grammar in CNF, we will always produce a **binary tree** as our *derivation tree*.

Because of this property, we can theoretically construct a *complete* binary tree

Theorem

If **G** is a CFG in CNF that has **p** live productions and **q** dead productions, and if **w** is a word generated by **G** that has more than 2^p letters in it, then somewhere in every derivation tree for **w** there is an example of some nonterminal (call it **Z**) being used twice where the second **Z** is descended from the first **Z**.

Note

When we expand the productions of a grammar in CNF, we will always produce a **binary tree** as our *derivation tree*.

Because of this property, we can theoretically construct a *complete* binary tree

Theorem

If **G** is a CFG in CNF that has **p** live productions and **q** dead productions, and if **w** is a word generated by **G** that has more than 2^p letters in it, then somewhere in every derivation tree for **w** there is an example of some nonterminal (call it **Z**) being used twice where the second **Z** is descended from the first **Z**.

The live productions indicate the maximum *depth* of the tree

Definition

In a given derivation of a word in a given CFG, a nonterminal is said to be **self-embedded** if it ever occurs as a tree descendent of itself

Example

CFG for NONNULLPALINDROME - derivation for aabaa

$S \to AX$	$S \rightarrow b$
$X \to SA$	$S \rightarrow AA$

- $S \to BY$ $S \to BB$
- $Y \to SB$ $A \to a$
- $S \to a \qquad \qquad B \to b$

Definition

Let us introduce the notation $\stackrel{*}{\Rightarrow}$ to stand for the phrase "can eventually produce". It is used in the following context:

Suppose in a certain CFG the working string S_1 can produce the working string S_2 , which in turn can produce $S_3 \ldots S_n$

We can then write:

$$S_1 \stackrel{*}{\Rightarrow} S_n$$

Definition

Let us introduce the notation $\stackrel{*}{\Rightarrow}$ to stand for the phrase "can eventually produce". It is used in the following context:

Suppose in a certain CFG the working string S_1 can produce the working string S_2 , which in turn can produce $S_3 \ldots S_n$

We can then write:

$$S_1 \stackrel{*}{\Rightarrow} S_n$$

For NONNULLPALINDROME, we can state the following:

$$X \stackrel{*}{\Rightarrow} a^n X a^n$$

Non-Context-Free Languages

- It turns out that not all languages are context-free.
- The simplest example of a non-context-free language is

$$\{\mathbf{a}^n\mathbf{b}^n\mathbf{c}^n\mid n\geq 0\}.$$

• To process this would require two stacks.

The Pumping Lemma

Theorem (The Pumping Lemma for Context-Free Grammars)

If L is a context-free language then there exists an integer p such that if any string $s \in L$ has length at least p, then s may be divided into five substrings s = uvxyz such that

- |vy| > 0,
- $|vxy| \leq p$,
- $uv^i xy^i z \in L$ for all $i \ge 0$.

The Pumping Lemma Parts

- *u* the substring of all the letters of *w* generated to the "left" of the derivation we care about
- v the substring of all the letters of w descended from the root of the derivation we care about but to the left of the self-embedded state
- *x* the substring of all the letters of *w* descended from the **self-embedded** state
- *y* the substring of all the letters of *w* descended from the right of the **self-embedded** state to the end of the derivation we care about
- *z* the substring of all the letters of *w* generated to the "right" of the derivation we care about

- The proof is somewhat similar to the proof of the Pumping Lemma for Regular Languages except that it is based on a grammar rather than a machine.
- But first, an example...

Example

- Let $L = {\mathbf{a}^n \mathbf{b}^n \mathbf{c}^n \mid n \ge 0}.$
- We will use the Pumping Lemma to show that *L* is not context-free.

Proof.

- Suppose *L* is context-free.
- Then let *p* be the "pumping length" of *L* (for CFLs).
- Let $s = \mathbf{a}^p \mathbf{b}^p \mathbf{c}^p$.
- Then s = uvxyz such that |vy| > 0, $|vxy| \le p$, and $uv^ixy^iz \in L$.
- We will show that this is not possible.

Proof.

- *vxy* is the "middle part" of *uvxyz* and it has length at most *p*.
- Therefore, it consists of
 - Case 1: All a's,
 - Case 2: Some **a**'s followed by some **b**'s,
 - Case 3: All **b**'s,
 - Case 4: Some **b**'s followed by some **c**'s, or
 - Case 5: All \mathbf{c} 's.

Proof.

- It is enough to consider the first two cases.
- The other three cases are similar.
- Case 1: Suppose vxy consists of all **a**'s.
 - Then $v = \mathbf{a}^k$ and $y = \mathbf{a}^m$ for some k, m, not both 0.
 - So $uv^2xy^2z = \mathbf{a}^{p+k+m}\mathbf{b}^p\mathbf{c}^p$, which is not in *L*.
 - This is a contradiction.

Proof.

- Case 2: *vxy* consists of some **a**'s followed by some **b**'s.
 - There are three possibilities:
 - v is all **a**'s and y is all **b**'s,
 - *v* is all **a**'s and *y* is some **a**'s followed by some **b**'s,
 - *v* is some **a**'s followed by some **b**'s and *y* is all **b**'s.

Proof.

- Case 2, continued...
 - It doesn't really matter which is the case because both v and y get pumped up.
 - Let *k* be the number of **a**'s and *m* be the number of **b**'s altogether in *vy*, *m* and *k* are not both 0 (but possibly *m* = *k*).
 - So uv^2xy^2z will contain p + k **a**'s and p + m **b**'s, but only p **c**'s.
 - So $uv^2xy^2z \notin L$.
 - This is a contradiction.
- Cases 3, 4, and 5 are similar.
- Therefore, *L* is not context-free.

The Idea Behind the Proof

• If a CFL contains a string w with a sufficiently long derivation

$$S \stackrel{*}{\Rightarrow} w$$
,

then some variable *A* must appear more than once in the derivation.

• That is, we must have

$$S \stackrel{*}{\Rightarrow} uAz \stackrel{*}{\Rightarrow} uvAyz \stackrel{*}{\Rightarrow} uvxyz,$$

for some strings *u*, *v*, *x*, *y*, and *z*.

• Thus,
$$A \stackrel{*}{\Rightarrow} vAy$$
 and $A \stackrel{*}{\Rightarrow} x$.

• We may repeat the derivation

$$A \stackrel{*}{\Rightarrow} vAy$$

as many times as we like (including zero times), producing strings $uv^n xy^n z$, for any $n \ge 0$.

Proof.

- Let b be the largest number of symbols on the right-hand side of any grammar rule. (Assume b ≥ 2.)
- Let *h* be the height of the derivation tree of a string *s*.
- Then *s* can contain at most *b*^{*h*} symbols.
- Equivalently, if *s* contains more than *b*^{*h*} symbols, then the height of the derivation tree of *s* must be more *h*.

Proof.

- Now |V| is the number of variables in the grammar of *L*.
- So if a string in *L* has a length greater than $b^{|V|+1}$, then the height of its derivation tree must be more than |V| + 1.
- So let p = b^{|V|+1} and suppose that a string s ∈ L has length at least p.

П

Proof.

- Consider the longest path through the derivation tree of *s*.
- It has length at least |V| + 1.
- That path has |V| + 2 nodes on it, counting the root node S and the leaf node, which is a terminal.

Proof.

- Thus, |V| + 1 of the nodes are variables.
- So one of them must be repeated.
- As we follow the longest path back from leaf to root, let *A* be the first variable that repeats.
- Now consider these two occurrences of A along the longest path.

Proof.

• The "middle part" of this tree, the part that produces

$$A \stackrel{*}{\Rightarrow} vAy,$$

may be repeated as many times as desired.

Proof.

- Therefore, the strings uv^2xy^2z , uv^3xy^3z , etc. can also be derived.
- So can the string uxz.
- Furthermore, we may assume that this was the shortest derivation of *s*.
- It follows that v and y cannot both be empty strings.
- If they were, then the middle part of the derivation would be

$$A \stackrel{*}{\Rightarrow} A$$

which could be eliminated.

• Thus, |vy| > 0.

Proof, conclusion.

- Finally, we must show that $|vxy| \le p$.
- The subtree rooted at the second-to-last A has height at most |V| + 1.
- So the string *vxy* has at most $b^{|V|+1} = p$ symbols.

Example

- Let $\Sigma = {\mathbf{a}, \mathbf{b}}.$
- Show that the language

 $\{ww \mid w \in \Sigma^*\}$

is not context-free.

• Use $s = \mathbf{a}^p \mathbf{b}^p \mathbf{a}^p \mathbf{b}^p$.

Homework 9a

- **①** Consider the grammar for the language $L = \{a^n b^n\}$
 - 1 (5pts) Chomsky-ize this grammar
 - (5pts) Find all derivation trees that **do not** have self-embedded non-terminals
- ② (5pts) Why does the pumping lemma argument **not** show the language PALINDROME is not context free? Show how *v* and *y* can be found such that $w = uv^n xy^n z$ are also in PALINDROME no matter what *w* is.
- (5pts) How would you go about proving the following theorem? If *L* is a language over the one-letter alphabet $\Sigma = \{ a \}$ and *L* can be shown to be non-regular using the pumping lemma for regular languages, then *L* can be shown to be non-context-free using the pumping lemma for context-free languages.