

CSCI 340: Computational Models
Non-Context-Free Languages

Chapter 16

Department of Computer Science

Self-Embeddedness

Theorem

Let G be a CFG in Chomsky Normal Form. Let us call the production of the form:

$$
\text { Nonterminal } \rightarrow \text { Nonterminal Nonterminal }
$$

live and the productions of the form

$$
\text { Nonterminal } \rightarrow \text { terminal }
$$

dead. If we restrict to using live productions at most once each, we can generate only finitely many words.

Self-Embeddedness

- Every time we apply a live production, we increase the number of nonterminals by one
- Every time we apply a dead production, we decrease the number of nonterminals by one
- We will always apply one more dead production than live productions.
- Show the self-embeddedness of any word generated by S

Example

$$
\begin{aligned}
S & \rightarrow A Z \\
Z & \rightarrow B B \\
B & \rightarrow Z A \\
A & \rightarrow a \\
B & \rightarrow b
\end{aligned}
$$

Self-Embeddedness

Note

When we expand the productions of a grammar in CNF, we will always produce a binary tree as our derivation tree.

Because of this property, we can theoretically construct a complete binary tree

Self-Embeddedness

Note

When we expand the productions of a grammar in CNF, we will always produce a binary tree as our derivation tree.

Because of this property, we can theoretically construct a complete binary tree

Theorem

If \boldsymbol{G} is a CFG in CNF that has \boldsymbol{p} live productions and \boldsymbol{q} dead productions, and if \mathbf{w} is a word generated by \boldsymbol{G} that has more than 2^{p} letters in it, then somewhere in every derivation tree for \mathbf{w} there is an example of some nonterminal (call it \mathbf{Z}) being used twice where the second \boldsymbol{Z} is descended from the first \boldsymbol{Z}.

Self-Embeddedness

Note

When we expand the productions of a grammar in CNF, we will always produce a binary tree as our derivation tree.

Because of this property, we can theoretically construct a complete binary tree

Theorem

If \boldsymbol{G} is a CFG in CNF that has \boldsymbol{p} live productions and \boldsymbol{q} dead productions, and if \boldsymbol{w} is a word generated by \boldsymbol{G} that has more than 2^{p} letters in it, then somewhere in every derivation tree for \mathbf{w} there is an example of some nonterminal (call it \mathbf{Z}) being used twice where the second \boldsymbol{Z} is descended from the first \boldsymbol{Z}.

The live productions indicate the maximum depth of the tree

Self-Embeddedness

Definition

In a given derivation of a word in a given CFG, a nonterminal is said to be self-embedded if it ever occurs as a tree descendent of itself

Example

CFG for NONNULLPALINDROME - derivation for aabaa

$$
\begin{array}{ll}
S \rightarrow A X & S \rightarrow b \\
X \rightarrow S A & S \rightarrow A A \\
S \rightarrow B Y & S \rightarrow B B \\
Y \rightarrow S B & A \rightarrow a \\
S \rightarrow a & B \rightarrow b
\end{array}
$$

Self Embeddedness

Definition

Let us introduce the notation $\stackrel{*}{\Rightarrow}$ to stand for the phrase "can eventually produce". It is used in the following context:

Suppose in a certain CFG the working string S_{1} can produce the working string S_{2}, which in turn can produce $S_{3} \ldots S_{n}$

We can then write:

$$
S_{1} \stackrel{*}{\Rightarrow} S_{n}
$$

Self Embeddedness

Definition

Let us introduce the notation $\stackrel{*}{\Rightarrow}$ to stand for the phrase "can eventually produce". It is used in the following context:

Suppose in a certain CFG the working string S_{1} can produce the working string S_{2}, which in turn can produce $S_{3} \ldots S_{n}$

We can then write:

$$
S_{1} \stackrel{*}{\Rightarrow} S_{n}
$$

For NONNULLPALINDROME, we can state the following:

$$
X \stackrel{*}{\Rightarrow} a^{n} X a^{n}
$$

Non-Context-Free Languages

- It turns out that not all languages are context-free.
- The simplest example of a non-context-free language is

$$
\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mathbf{c}^{n} \mid n \geq 0\right\}
$$

- To process this would require two stacks.

The Pumping Lemma

Theorem (The Pumping Lemma for Context-Free Grammars)

If L is a context-free language then there exists an integer p such that if any string $s \in L$ has length at least p, then s may be divided into five substrings $s=u v x y z$ such that

- $|v y|>0$,
- $|v x y| \leq p$,
- $u v^{i} x y^{i} z \in L$ for all $i \geq 0$.

The Pumping Lemma Parts

- u - the substring of all the letters of w generated to the "left" of the derivation we care about
- v - the substring of all the letters of w descended from the root of the derivation we care about but to the left of the self-embedded state
- x - the substring of all the letters of w descended from the self-embedded state
- y - the substring of all the letters of w descended from the right of the self-embedded state to the end of the derivation we care about
- z - the substring of all the letters of w generated to the "right" of the derivation we care about

The Proof

- The proof is somewhat similar to the proof of the Pumping Lemma for Regular Languages except that it is based on a grammar rather than a machine.
- But first, an example...

An Example

Example

- Let $L=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mathbf{c}^{n} \mid n \geq 0\right\}$.
- We will use the Pumping Lemma to show that L is not context-free.

An Example

Proof.

- Suppose L is context-free.
- Then let p be the "pumping length" of L (for CFLs).
- Let $s=\mathbf{a}^{p} \mathbf{b}^{p} \mathbf{c}^{p}$.
- Then $s=u v x y z$ such that $|v y|>0,|v x y| \leq p$, and $u v^{i} x y^{i} z \in L$.
- We will show that this is not possible.

An Example

Proof.

- $v x y$ is the "middle part" of $u v x y z$ and it has length at most p.
- Therefore, it consists of

Case 1: All a's,
Case 2: Some a's followed by some b's, Case 3: All b's,
Case 4: Some b's followed by some c's, or Case 5: All c's.

An Example

Proof.

- It is enough to consider the first two cases.
- The other three cases are similar.
- Case 1: Suppose vxy consists of all a's.
- Then $v=\mathbf{a}^{k}$ and $y=\mathbf{a}^{m}$ for some k, m, not both 0 .
- So $u v^{2} x y^{2} z=\mathbf{a}^{p+k+m} \mathbf{b}^{p} \mathbf{c}^{p}$, which is not in L.
- This is a contradiction.

An Example

Proof.

- Case 2: vxy consists of some a's followed by some b's.
- There are three possibilities:
- v is all a's and y is all b's,
- v is all a's and y is some a's followed by some \mathbf{b} 's,
- v is some a's followed by some \mathbf{b} 's and y is all \mathbf{b} 's.

An Example

Proof.

- Case 2, continued...
- It doesn't really matter which is the case because both v and y get pumped up.
- Let k be the number of a's and m be the number of \mathbf{b} 's altogether in $v y, m$ and k are not both 0 (but possibly $m=k$).
- So $u v^{2} x y^{2} z$ will contain $p+k$ a's and $p+m$ b's, but only p c's.
- So $u v^{2} x y^{2} z \notin L$.
- This is a contradiction.
- Cases 3, 4, and 5 are similar.
- Therefore, L is not context-free.

The Idea Behind the Proof

- If a CFL contains a string w with a sufficiently long derivation

$$
S \stackrel{*}{\Rightarrow} w,
$$

then some variable A must appear more than once in the derivation.

- That is, we must have

$$
S \stackrel{*}{\Rightarrow} u A z \stackrel{*}{\Rightarrow} u v A y z \stackrel{*}{\Rightarrow} u v x y z,
$$

for some strings u, v, x, y, and z.

The Idea Behind the Proof

- Thus, $A \stackrel{*}{\Rightarrow} v A y$ and $A \stackrel{*}{\Rightarrow} x$.
- We may repeat the derivation

$$
A \stackrel{*}{\Rightarrow} v A y
$$

as many times as we like (including zero times), producing strings $u v^{n} x y^{n} z$, for any $n \geq 0$.

The Proof

Proof.

- Let b be the largest number of symbols on the right-hand side of any grammar rule. (Assume $b \geq 2$.)
- Let h be the height of the derivation tree of a string s.
- Then s can contain at most b^{h} symbols.
- Equivalently, if s contains more than b^{h} symbols, then the height of the derivation tree of s must be more h.

The Proof

Proof.

- Now $|V|$ is the number of variables in the grammar of L.
- So if a string in L has a length greater than $b^{|V|+1}$, then the height of its derivation tree must be more than $|V|+1$.
- So let $p=b^{|V|+1}$ and suppose that a string $s \in L$ has length at least p.

The Proof

Proof.

- Consider the longest path through the derivation tree of s.
- It has length at least $|V|+1$.
- That path has $|V|+2$ nodes on it, counting the root node S and the leaf node, which is a terminal.

The Proof

Proof.

- Thus, $|V|+1$ of the nodes are variables.
- So one of them must be repeated.
- As we follow the longest path back from leaf to root, let A be the first variable that repeats.
- Now consider these two occurrences of A along the longest path.

The Proof

The Proof

Proof.

- The "middle part" of this tree, the part that produces

$$
A \stackrel{*}{\Rightarrow} v A y,
$$

may be repeated as many times as desired.

The Proof

The Proof

Proof.

- Therefore, the strings $u v^{2} x y^{2} z, u v^{3} x y^{3} z$, etc. can also be derived.
- So can the string $u x z$.
- Furthermore, we may assume that this was the shortest derivation of s.
- It follows that v and y cannot both be empty strings.
- If they were, then the middle part of the derivation would be

$$
A \stackrel{*}{\Rightarrow} A,
$$

which could be eliminated.

- Thus, $|v y|>0$.

The Proof

Proof, conclusion.

- Finally, we must show that $|v x y| \leq p$.
- The subtree rooted at the second-to-last A has height at most $|V|+1$.
- So the string $v x y$ has at most $b^{|V|+1}=p$ symbols.

An Example

Example

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}\}$.
- Show that the language

$$
\left\{w w \mid w \in \Sigma^{*}\right\}
$$

is not context-free.

- Use $s=\mathbf{a}^{p} \mathbf{b}^{p} \mathbf{a}^{p} \mathbf{b}^{p}$.

Homework 9a

(1) Consider the grammar for the language $L=\left\{a^{n} b^{n}\right\}$
(1) (5pts) Chomsky-ize this grammar
(2) (5pts) Find all derivation trees that do not have self-embedded non-terminals
2 (5pts) Why does the pumping lemma argument not show the language PALINDROME is not context free? Show how v and y can be found such that $w=u v^{n} x y^{n} z$ are also in PALINDROME no matter what w is.
(3) (5pts) How would you go about proving the following theorem? If L is a language over the one-letter alphabet $\Sigma=\{a\}$ and L can be shown to be non-regular using the pumping lemma for regular languages, then L can be shown to be non-context-free using the pumping lemma for context-free languages.

