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Result Post-Processing
Alternative Algorithms

Slides originally by Panayiotis Tsaparas, modified
by Stephanie Schwartz



N=N10/H)
POST-PROCESSING

Reducing the # of frequent itemsets
Reducing the number of rules



Compact Representation of Frequent

ltemsets

Some itemsets are redundant because they have identical

support as their supersets
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Number of frequent itemsets
Need a compact representation



Maximal Frequent ltemset

An itemset is maximal frequent if none of its immediate supersets is

frequent

Maximal
ltemsets

E

Infrequent
ltemsets

Maximal: no superset has this property



Negative Border

ltemsets that are not frequent, but all their immediate subsets are

frequent.

Infrequent

) S—
<

Minimal: no subset has this property

ltemsets



Border

- Border = Positive Border + Negative Border

- Itemsets such that all their immediate subsets are
frequent and all their immediate supersets are
infrequent.

- Either the positive, or the negative border is
sufficient to summarize all frequent itemsets.



Closed ltemset

- An itemset is closed if none of its immediate supersets
has the same support as the itemset

TID

ltems
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Maximal vs Closed ltemsets

TID ltems




Maximal vs Closed Frequent Itemsets

Closed but not
maximal

Closed
and
maximal

# Closed =9
# Maximal = 4



Maximal vs Closed ltemsets

Frequent
ltemsets

Closed
Frequent
ltemsets

axim:
reque
emse



Pattern Evaluation

Association rule algorithms tend to produce too many rules but
many of them are uninteresting or redundant
- Redundantif {A,B,C} — {D} and {A,B} — {D} have same support &
confidence
Summarization techniques
- Uninteresting, if the pattern that is revealed does not offer useful

information.
Interestingness measures: a hard problem to define

Interestingness measures can be used to prune/rank the
derived patterns

- Subjective measures: require human analyst

- Objective measures:rely on the data.

In the original formulation of association rules, support &
confidence are the only measures used



Computing Interestingness Measure

Given a rule X — Y, information needed to compute rule
interestingness can be obtained from a contingency table

Contingency table for X — Y

. support of X and Y

fi:
fio: support of X and Y
for: support of X and Y

Y Y
X f11 f10 fys
X for foo fo-
fiq f+o N

foo: SUpport of X and Y

X: itemset X appears in tUple\A

Y: itemset Y appears in tuple
X: itemset X does not appear in tuple

Y: itemset Y does not appear in tuple

Used to define various measures

+ support, confidence, lift, Gini,
J-measure, etc.




Drawback of Confidence

Number of people that
drink tea

Number of people that
drink coffee and tea

Number of people that
drink coffee but not tea

Coffee | Coffee
Tea 15 7T 5 20
Tea 75 5 80
90 40 100

Association Rule: Tea — Coffee

Confidence= P(Coffee|Tea) = ;—(5) =0.75

but P(Coffee) =

« Although confidence is high, rule is misleading

90
100

0.9

. P(Coffee|Tea) = 0.9375

Number of people that
drink coffee




Statistical Independence

- Population of 1000 students

- 600 students know how to swim (S)
- 700 students know how to bike (B)
- 420 students know how to swim and bike (S,B)

- P(SAB) = 420/1000 = 0.42
-P(S)xP(B)=0.6 x0.7 =0.42

- P(SAB) = P(S) x P(B) => Statistical independence



Statistical Independence

- Population of 1000 students

- 600 students know how to swim (S)
- 700 students know how to bike (B)
- 500 students know how to swim and bike (S,B)

- P(SAB) = 500/1000 = 0.5
-P(S)xP(B)=0.6 x0.7 =0.42

- P(SAB) > P(S) x P(B) => Positively correlated



Statistical Independence

- Population of 1000 students

- 600 students know how to swim (S)
- 700 students know how to bike (B)
- 300 students know how to swim and bike (S,B)

- P(SAB) = 300/1000 = 0.3
-P(S)xP(B)=0.6 x0.7 =0.42

- P(SAB) < P(S) x P(B) => Negatively correlated



Statistical-based Measures

- Measures that take into account statistical dependence
- Lift/Interest/PMI

P(Y|X)  P(X,Y)
P(Y) PX)P(Y)

Lift = = Interest

In text mining it is called: Pointwise Mutual Information
- Piatesky-Shapiro

PS = P(X,Y) — P(X)P(Y)

- All these measures measure deviation from independence
- The higher, the better (why?)



Example: Lift/Interest

Coffee | Coffee

ea B 20

Tea 75 5 80
90 10 100

Association Rule: Tea — Coffee

Confidence= P(Coffee|Tea) = 0.75
but P(Coffee) = 0.9

= Lift = 0.75/0.9=0.8333 (< 1, therefore is negatively associated)
=0.15/(0.9%0.2)



Another Example
| of | the | ofthe

, P(of, the) =~ P(of)P(the
documents

If | was creating a document by picking words randomly, (of, the) have
more or less the same probability of appearing together by chance _

| hong | kong | hong kong

0o 05 019 P(hong, kong) > P(hong)P(kong)
documents

(hong, kong) have much lower probability to appear together by chance.

The two words appear almost always only together _
| obama | keragounis | obama, karagounis [FJCAUNENRHNSRRIINGS

Fraction of 0.2 0.2 0.001 P(obama)P(karagounis)
documents

(obama, karagounis) have much higher probability to appear together by chance.

The two words appear almost never together _




Drawbacks of Lift/Interest/Mutual Information

Fraction of 0.0001 00001  0.0001
documents
0.0001
MI (honk, konk) = = 10000

0.0001 % 0.0001

| hong | kong |hong, kong
Fraction of 0.2 0.2 0.19
documents

MI(hong,kong) =

Rare co-occurrences are deemed more interesting.
But this is not always what we want



THE FP-TREE AND THE
FP-GROWTH ALGORITHM

Slides from course lecture of E. Pitoura



Overview

The FP-tree contains a compressed
representation of the transaction database.
- A trie (prefix-tree) data structure is used

- Each transaction is a path in the tree — paths can
overlap.

Once the FP-tree is constructed the recursive,
divide-and-conquer FP-Growth algorithm is used
to enumerate all frequent itemsets.



FP-tree Construction

ltems
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{AB}
{B,C,D}
{A,C,D,E}
{AD,E}
{A,B,C}
{A,B,C,D}
{B,C}
{A,B,C}
{A,B,D}
{B.C.E}

The FP-tree is a trie (prefix tree)

Since transactions are sets of
items, we need to transform them
Into ordered sequences so that
we can have prefixes

- Otherwise, there is no common prefix
between sets {A,B} and {B,C,A}
We need to impose an order to
the items
- Initially, assume a lexicographic order.



FP-tree Construction

- Initial

y the tree is empty

ltems

N —
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{A,B}
{B,C,D}
{A,C,D,E}
{A,D,E}
{A,B,C}
{AB,C,D}
{B,C}
{A,B,C}
{A,B,D}
{B.C.E}

O null



FP-tree Construction

Reading transaction TID = 1

ltems
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{A,B}
{B,C,D}
{A,C,D,E}
{A,D,E}
{A,B,C}
{A,B,C,D}
{B,C}
{A,B,C}
{A,B,D}
{B.C.E}

Each node in the tree has a label consisting of the item
and the support (number of transactions that reach that
node, i.e. follow that path)

nuf§;>

A1)

ol

Node label = item:support



FP-tree Construction

Reading transaction TID = 2

ltems null
{A,B}

{B,C,D}
{A.C,D,E} IQ ’QB 1

(AD.E) \
{A,B,C} B:1

{A,B,C,D}
{B.C}
{A,B,C} OD:l
{A,B,D}
{B,C,E} Each transaction is a path in the tree

N —i
S©®NOOEWN G

We add pointers between nodes that refer to the
same item



FP-tree Construction

ltems

- —]
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{A,B}
{B,C,D}
{A,C,D,E}
{A,D,E}
{A,B,C}
{A,B,C,D}
{B,C}
{A,B,C}
{A,B,D}
{B.C.E}

The Header Table and the

pointers assist in
computing the itemset

support

After reading
transactions TID=1, 2:

null

A

R

Header Table
ltem | Pointer
A E—
B N —
C - — -
D ———
E .

\,QB:I

' s,
| //
| ’,
:B:IC}//



FP-tree Construction

ltems

—]
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{A,B}
{B,C,D}
{A,C,D,E}
{A,D,E}
{A,B,C}
{A,B,C,D}
{B,C}
{A,B,C}
{A,B,D}
{B.C.E}

ltem

Pointer

mo o w >

- Reading transaction TID = 3 null L
A /OB:I

_______________________________

____________________________________



FP-tree Construction

- Reading transaction TID = 3

ltems

N —]
o@OO\lO?O'I-POOI\)—\E

{A,B}
{B,C,D}
{A,C,D,E}
{A,D,E}
{A,B,C}
{A,B,C,D}
{B,C}
{A,B,C}
{A,B,D}
{B.C.E}

ltem

Pointer

mo o w >

_______________________________

____________________________________



FP-tree Construction

Reading transaction TID = 3

ltems

—
— -
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{A,B}
{B,C,D}
{A,C,D,E}
{A,D,E}
{A,B,C}
{A,B,C,D}
{B,C}
{A,B,C}
{A,B,D}
{B.C.E}

ltem

Pointer

mo o w >

Each transaction is a path in the tree



FP-Tree Construction

TID ltems
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

Header table

Transaction Each transaction is a path in the tree

Database

-
-
-
-

-
-
-
-

-
-
-
-
-

ltem

Pointer

moO O w >

T T T Pointers are used to assist

frequent itemset generation



FP-tree size

Every transaction is a path in the FP-tree

The size of the tree depends on the
compressibility of the data

- Extreme case: All transactions are the same, the FP-
tree is a single branch

- Extreme case: All transactions are different the size of
the tree is the same as that of the database (bigger
actually since we need additional pointers)



ltem ordering

The size of the tree also depends on the ordering of the items.
Heuristic: order the items in according to their frequency from
larger to smaller.

- We would need to do an extra pass overthe datasetto count
frequencies

Example:

TID ltems TID ltems
1 {A,B} 6(A)=7, o(B)=8, 1 {B,A}

2 {B,C,D} o(C)=7, a(D)=5, 2 {B,C,D}
3 | {ACD,E} | ofE)=3 3 | {ACD,E}
4 {A.D,E} Ordering : B,A,C,D,E 4 {A,D,E}
5 {A,B,C} 5| {B,AC)
6 | {AB,C,D} > 6 | {B,AC,D}
7 {B,C} 7 {B,C}

8 {A,B,C} 8 {B,A,C}
9 {A,B,D} 9 | {BAD}
10 | {B,C,E} 10| {B.C.E}




Finding Frequent ltemsets

Input: The FP-tree

Output: All Frequent Itemsets and their support
Method:

- Divide and Conquer:
- Consider all itemsets thatend in: E, D, C, B, A

For each possible ending item, consider the itemsets with last
items one of items preceding it in the ordering

E.g, for E, consider all itemsets with last item D, C, B, A. This
way we get all the itesets ending at DE, CE, BE, AE

Proceed recursively this way.
Do this for all items.



Frequent itemsets

All ltemsets

D \ \\A

/7\\ 1\\\\\ ............................

DE CE~._ BE~_AE CD BD AD B AB

CDE BDE ADE BCE ACE ABE BGD ACD ABD ABC

NN SN

gACDE BCDE . ABDE = ABCE ABCD




Frequent ltemsets

All ltemsets

/ | NS T
/“‘//\\ l\\\\\

DE CE~._ B \AEgCD BD AD B

S NN \\\\

CDE BDEADE BCE ACE | ABE |  BGD ACD ABC

e ST N

ACDE BCDE ABDE = ABCE | ABCD

Frequent?




Frequent ltemsets

All ltemsets

........................ Erequent? /E/ ‘ \ \\n

I\E\\ CEX._ BEN_A gCD BD AD;

| D
Erequ&mt\\ \\ \ \\\ \

CDE BDEADE BCE ACE | ABE  BGD ACD . ABD ABC

Frequti?('? \ \frequent” \ | \

 ACDE BCDE & ABDE . ABCE ABCD




Frequent ltemsets

All ltemsets

L NS T—
// A A

C BE AE | CD BD AD AB
S S

CDE BDE ADE BCE ACE | ABE ~ BGD ACD§ BD  ABC

Fréoyént?\ \ \

ACDE BCDE ABDE  ABCE . ABCD

e We can generate all itemsets this way
We expect the FP-tree to contain a lot less



Using the FP-tree to find frequent itemsets

TID ltems
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

Header table

Transaction
Database

-
-
-
-
-
-
-
-

-
-
-
-

ltem

Pointer

mo o w >

’ Bottom-up traversal of the tree.

First, itemsets ending in E, then D,
etc, each time a suffix-based class



Finding Frequent ltemsets

Subproblem: find frequent
itemsets ending in E

Header table
ltem Pointer

mooOw>
\

= We will then see how to compute the support for the possible itemsets



Finding Frequent ltemsets

Endingin D

Header table

ltem Pointer

moO o w>




Finding Frequent ltemsets

Ending in C

Header table
ltem Pointer

mo o w >




Finding Frequent ltemsets

Ending in B

Header table
ltem Pointer

mooOw>
\




Finding Frequent ltemsets

Ending in A

Header table
ltem Pointer

____________

mooOw>
\




Algorithm

For each suffix X

Phase 1

- Construct the prefix tree for X as shown before, and
compute the support using the header table and the
pointers

Phase 2

- If X'is frequent, construct the conditional FP-tree for X in
the following steps
Recompute support
Prune infrequent items
Prune leaves and recurse



Example

Phase 1 — construct
prefix tree

Find all prefix paths that
contain E

-
-
-
-

Header table
ltem Pointer

mooOw>
\
O
ek

Suffix Paths for E:
{A,C,D,E}, {AD,E}, {B,C,E}



Example

Phase 1 — construct
prefix tree

Find all prefix paths that
contain E

Prefix Paths for E:
{A,C,D,E}, {A,D,E}, {B,C,E}

E: 1l



Example

Compute Support for E
(minsup = 2)
How?

Follow pointers while

summing up  counts:
1+1+1=3>2

E is frequent

E: 1l

{E} is frequent so we can now consider suffixes DE, CE, BE, AE



Example

E is frequent so we proceed with Phase 2

Phase 2 A:7

Convert the prefix tree of E into a
conditional FP-tree

e f T T " C:3
Two changes o
(1) Recompute support \ p :
(2) Prune infrequent D:1 QE31 E:1



Example

Recompute Support

A:7 :
The support counts for some of the \
nodes include transactions that do , ki " C:3
not end in E o '
For example in null->B->C->E we \ Q
count {B, C} D:1 E:l E:1

The support of any node is equal to E:1
the sum of the support of leaves
with label E in its subtree



Example




Example




Example




Example




Example




Example




Example




Example

Truncate

Delete the nodes of E




Example

Truncate

Delete the nodes of E




Example

Truncate

Delete the nodes of E




Example

Prune infrequent

In the conditional FP-tree
some nodes may have
support less than minsup

e.g., B needs to be
pruned

This means that B
appears with E less than
minsup times




Example




Example




Example

A2

The conditional FP-tree for E

Repeat the algorithm for {D, E}, {C, E}, {A, E}



Example

Phase 1

Find all prefix paths that contain D (DE) in the conditional FP-tree



Example

Phase 1

Find all prefix paths that contain D (DE) in the conditional FP-tree



Example

Compute the support of {D,E} by following the pointers in the tree
1+1 =2 =2 = minsup

{D,E} is frequent



Example

Phase 2

Construct the conditional FP-tree
1. Recompute Support
2. Prune nodes



Example

Recompute support




Example

Prune nodes




Example

Prune nodes



Example

A2

Prune nodes c:1 Smallsupport



Example

null

A2

Final condition FP-tree for {D,E}

The support of Ais = minsup so {A,D,E} is frequent
Since the tree has a single node we return to the next
subproblem



Example

The conditional FP-tree for E

We repeat the algorithm for{B;&}; {C,E}, {A,E}



Example

Phase 1

Find all prefix paths that contain C (CE) in the conditional FP-tree



Example

Phase 1

Find all prefix paths that contain C (CE) in the conditional FP-tree



Example

Compute the support of {C,E} by following the pointers in the tree
1+1 =2 =2 = minsup

{C,E} is frequent



Example

Phase 2

Construct the conditional FP-tree
1. Recompute Support
2. Prune nodes



Example

Recompute support



Example

Prune nodes



Example

null
A:l

Prune nodes



Example

null

A:l

Prune nodes



Example
null Q

Prune nodes

Return to the previous subproblem



Example

The conditional FP-tree for E

We repeat the algorithm for{B;&Lt6EH{AE}



Example

Phase 1

Find all prefix paths that contain A (AE) in the conditional FP-tree



Example

null

A2

Phase 1

Find all prefix paths that contain A (AE) in the conditional FP-tree



Example

null

A2

Compute the support of {A,E} by following the pointers in the tree
2 2 minsup

{A,E} is frequent

There is no conditional FP-tree for {A,E}



Example

- So for E we have the following frequent itemsets
{E}, {D.,E}, {C,E}, {A,E}

- We proceed with D



Example

Ending in D

Header table

ltem Pointer

mooOw>
\




Example

Phase 1 — construct
prefix tree

Find all prefix paths that
contain D

Support 5 > minsup, D is
frequent

Phase 2 C:3

Convert prefix tree into
conditional FP-tree

D:1

null




Example

Recompute support



Example

Recompute support



Example

Recompute support



Example

Recompute support



Example

Recompute support



Example

Prune nodes



Example

Prune nodes



Example

Construct conditional FP-trees for {C,D}, {B,D}, {A,D}

And so on....



Observations

At each recursive step we solve a subproblem
- Construct the prefix tree

- Compute the new support

- Prune nodes

Subproblems are disjoint so we never consider
the same itemset twice

Support computation is efficient — happens
together with the computation of the frequent
itemsets.



Observations

The efficiency of the algorithm depends on the
compaction factor of the dataset

If the tree is bushy then the algorithm does not
work well, it increases a lot of number of
subproblems that need to be solved.



FREQUENT ITEMSET
RESEARCH




Research Issues in Mining
Association Patterns

E Y
Conceptual Implementation Application
Issues Issues Issues
Y
Theroretical Type of Data Type Database Pattern Consiraints Past- Domains Other data
Formulation Patterns issues Discovery : processing mining
. -binary — -itern taxonomy problems
-lattice theory -numeric -optimization -template- -Web analysis —
-bounds on . -nominal -S0L support based -text analysis -classification
ftemset ' -ordinal -OLAP -multiple -bicinformatics | | Te9ression
enumeration \\ -mixed -multi-database support -Earth Science | | -clustering
\ -recommender
\ systems
% Visualization Interestingness
Rules ltemsets Other Computational Algorithm and
Structures model Data Structure
-negative -closed
:ggﬁ:;ld ence :;nr:zlrmiil -subtrees -serial or parallel "SFSOH
; ging -subgraphs -online or batch i o

-weighted patterns -tree-projeciton Measure Method
-spatial and co- -hyperclique -FP-tras
location patterns patterns -H-mine ]
-ternporal (eyclic, -support -Partition -objective -r_ank_lng
sequential) envelope -Sampling-based -subjective -filtering .
-fuzzy -CHARM -SUMmMaAanzing
-exception rules

Figure 6.31. A summary of the various research activities in association analysis.




