
CSCI 340: Computational Models

Regular Expressions

Chapter 4 Department of Computer Science



Yet Another New Method for Defining Languages

Given the Language:

L1 = {xn for n = 1 2 3 . . .}

We could easily change the sequence for n:

L2 = {xn for n = 1 3 5 7 . . .}

But if we change the sequence for n it can be di�icult:

L3 = {xn for n = 1 4 9 16 . . .}

Or just unwieldy / non-definitive:

L3 = {xn for n = 3 4 8 22 . . .}

We need a notation for something more precise than the ellipsis
1 / 20



Reappearance of Kleene Star

Reconsider the language from Chapter 2:

L4 = {λ x xx xxx xxxx . . .}

We presented one method for indicating this set as a closure:

Let S = {x}. Then L4 = S∗

Or in shorthand:
L4 = {x}

∗

Let’s now introduce a Kleene star applied to a le�er rather than a set:

x∗

We can think of the star as an unknown or undetermined power.

2 / 20



Defining Languages

• We should not confuse x∗ with L4 as they are not equivalent
• L4 is semantically a language, x∗ is a language defining symbol
• We can define a language as follows: L4 = language(x∗)

Example

Σ = {a b}

L = {a ab abb abbb abbbb . . .}

L = language(a b∗)

L = language(ab∗)

Note: the Kleene star is applied to the le�er immediately preceding

3 / 20



Applying Kleene Star to an Entire String

• Closure to entire substrings requires forced precedence
• We can accomplish this by grouping with parentheses
• For example: (ab)∗ = λ or ab or abab or ababab . . .

We can also use + to represent one-or-more

Theorem
xx∗ = x+

Proof.
L1 = language(xx∗) L2 = language(x+)
language(x∗) = λ x xx xxx . . .

language(x x∗) = xλ xx xxx xxxx . . .

language(xx∗) = x xx xxx xxxx . . .

language(xx∗) = language(x+) = x xx xxx xxxx . . . �

4 / 20



Language Examples

Example

The language L1 can be defined by any of the expressions below:

xx∗ x+ xx∗x∗ x∗xx∗ x+x∗ x∗x∗x∗xx∗

Remember: x∗ can always be λ

Example

The language defined by the expression

ab∗a

is the set of all strings of a’s and b’s that have at least two le�ers that

1 start and end with a

2 only have b’s in between
5 / 20



Language Examples

Example

The language of the expression

a∗b∗

contains all of the strings of a’s and b’s in which all the a’s (if any)
come before all the b’s (if any)

language(a∗b∗) = {λ a b aa ab bb aaa aab abb bbb aaaa . . .

Note
It is very important to note that

a∗b∗ , (ab)∗

6 / 20



Language Examples

Example

Consider the language T defined over the alphabet Σ = {a b c}

T = {a c ab cb abb cbb abbb cbbb abbbb cbbbb . . .}

We may formally define the language as follows:

T = language((a + c)b∗)

Or in English as:

T = language(either a or c followed by some b’s)

Note: parens force precedence change: selection before concatenation

7 / 20



Language Examples

Example

Consider the language L defined over the alphabet Σ = {a b}

L = {aaa aab aba abb baa bab bba bbb}

• What is the pa�ern?
• How can we write a language expression for this?
• How can we generalize this?
• How can we represent “choose any single character” from Σ?

8 / 20



Regular Expressions

Regular Language — a language which can be expressed as a regular
expression

Definition for Regular Expression

1 Every le�er of Σ can be made into a regular expression. λ is a
regular expression.

2 If r1 and r2 are regular expressions, then so are:
i (r1)

ii r1r2
iii r1 + r2
iv (r1

∗)

3 Nothing else is a regular expression

Note: we could add r1
+ but we can rewrite it as r1r1

∗

9 / 20



Defining Some Regular Expressions

Chalkboard Problems

1 All words that begin with an a and end with a b

2 All words that contain exactly two a’s

3 All words that contain exactly two a’s and start with b

4 All words that contain two or more a’s

5 All words that contain two or more a’s that end in b

6 All words of length 3 or higher which contain two a’s in a row

10 / 20



A More Complicated Example

Language of all words that have at least one a and one b

(a + b)∗a(a + b)∗b(a + b)∗

which can also be expressed as

<arbitrary> a <arbitrary> b <arbitrary>

This mandates that a must be found before b.
The unhandled case can be matched with:

bb∗aa∗

One of these must be true for our expression to be matched:

(a + b)∗a(a + b)∗b(a + b)∗ + bb∗aa∗

11 / 20



Confusing Equivalences

Consider from the last slide

(a + b)∗a(a + b)∗b(a + b)∗ + bb∗aa∗

If we wanted to include strings of all a’s or b’s we would use:

a∗ + b∗

This would mean that we could define a regular expression which
accepts any sequence of a’s and b’s:

(a + b)∗a(a + b)∗b(a + b)∗ + bb∗aa∗ + a∗ + b∗

but this is simply just
(a + b)∗

These are not obviously equivalent
12 / 20



Algebraic Equivalence Need Not Apply

An Analysis of (a + b)∗

(a + b)∗ = (a + b)∗ + (a + b)∗

(a + b)∗ = (a + b)∗(a + b)∗

(a + b)∗ = a(a + b)∗ + b(a + b)∗ + λ
(a + b)∗ = (a + b)∗ab(a + b)∗ + b∗a∗

All of these are equal — O_o

13 / 20



Some Algebra Works!

Let V be the language of all strings of a’s and b’s in which the strings
are either all b’s or else there is an a followed by some b’s. Let V also
contain the word λ.

V = {λ a b ab bb abb bbb abbb bbbb . . .}

We can then define V by the expression:

b∗ + ab∗

Where λ is embedded into the term b∗. Alternatively, we could define
V by the expression

(λ + a)b∗

This gives us an option of having a a or nothing! Since we could
always write b∗ = λb∗, we demonstrate the distributive property

λb∗ + ab∗ = (λ + a)b∗

14 / 20



Concatenation
Definition
If S and T are sets of strings of le�ers (whether they are finite or
infinite sets), we define the product set of strings of le�ers to be

ST = { all combinations of all string S followed with a string from T }

Example

S = {a aa aaa} T = {bb bbb}

ST = {abb abbb aabb aabbb aaabb aaabbb}

Rewri�en as a Regular Expression

(a + aa + aaa)(bb + bbb)

=

abb + abbb + aabb + aabbb + aaabb + aaabbb
15 / 20



Concatenation
Definition
If S and T are sets of strings of le�ers (whether they are finite or
infinite sets), we define the product set of strings of le�ers to be

ST = { all combinations of all string S followed with a string from T }

Example

S = {a bb bab} T = {a ab}

ST = {aa aab bba bbab baba babab}

Rewri�en as a Regular Expression

(a + bb + bab)(a + ab)

=

aa + aab + bba + bbab + baba + babab
16 / 20



Concatenation

What are the regular expressions for the concatenation of the two
sets in each example? Give both the simple and “distributed” forms

Example

P = {a bb bab}

Q = {λ bbbb}

Example

M = {λ x xx}

N = {λ y yy yyy yyyy . . .}

17 / 20



Associating a Language with Every RE

The rules below define the language associated with any RE

1 The language associated with the regular expression that is just
a single le�er is that one-le�er word alone and the language
associated with λ is just { λ }, a one-word language

2 If r1 is a regular expression associated with language L1 and r2 is
a regular expression associated with the language L2 then

i RE (r1)(r2) is associated with L1 × L2

language(r1r2) = L1L2

ii RE r1 + r2 is associated with L1 ∪ L2

language(r1 + r2) = L1 + L2

iii RE r1∗ is L1
∗ (the Kleene closure)

language(r1∗) = L1
∗

18 / 20



Expressing a Finite Language as RE

Theorem
If L is a finite language (a language with only finitely many words), then
L can be defined by a regular expression

Proof.
To make one RE that defines the language L, turn all the words in L
into boldface type and stick pluses between them. Violá. For
example, the RE defining the language

L = {aa ab ba bb}

is
aa + ab + ba + bb OR (a + b)(a + b)

The reason this “trick” only works for finite languages is that an
infinite language would yield an infinitely-long regular expression
(which is forbidden) �

19 / 20



EVEN-EVEN

E =
[
aa + bb + (ab + ba) (aa + bb)∗ (ab + ba)

]
This regular expression represents the collection of all words that are
made up of “syllables” of three types:

type1 = aa
type2 = bb
type3 = (ab + ba) (aa + bb)

∗ (ab + ba)
E =

[
type1 + type2 + type3

]
�estion 1

What does this Regular Expression “do” ?

�estion 2

What are the first 12 strings matched by this RE?

20 / 20


