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A New Method for Defining Languages

Recursive Definitions allow us to define sets in a unique way
1 Specify some basic objects in the set.
2 Give rules for constructing additional objects in the set.
3 Declare that no objects except those constructed are allowed

Example

Standard Definition:
EVEN is the set of all positive whole numbers divisible by 2

Alternative Definition:
EVEN is the set of all 2n where n = 1 2 3 4 . . .

Recursive Definition:
1 2 is in EVEN

2 if x is in EVEN, then so is x + 2.

3 The only elements in EVEN are those produced by (1) and (2)
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Fun with EVEN

�estion

Why would we ever want to use the recursive definition for EVEN?

Example

Prove 14 is in set EVEN

Proof by Standard Definition.

Divide 14 by 2 and find there is no remainder �

Proof by Alternative Definition.

Somehow come up with the number 7
Since (2)(7) = 14, 14 is in EVEN �
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Fun with EVEN

Proof by Recursive Definition.

By Rule 1, 2 is in EVEN.
By Rule 2, we know 2 + 2 = 4 is also in EVEN.
By Rule 2, we know 4 + 2 = 6 is also in EVEN.
By Rule 2, we know 6 + 2 = 8 is also in EVEN.
By Rule 2, we know 8 + 2 = 10 is also in EVEN.
By Rule 2, we know 10 + 2 = 12 is also in EVEN.
By Rule 2, we know 12 + 2 = 14 is also in EVEN. �

Aside: This is completely disgusting

Can we come up with a be�er recursive definition?
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Fun with EVEN

A Be�er Recursive Definition for EVEN

1 2 is in EVEN

2 If x and y are both in EVEN, then so is x + y

3 The only elements in EVEN are those produced by (1) and (2)

Proving 14 is in EVEN by our new Definition.

By Rule 1, 2 is in EVEN.
By Rule 2, x = 2, y = 2→ 4 is also in EVEN.
By Rule 2, x = 2, y = 4→ 6 is also in EVEN.
By Rule 2, x = 4, y = 4→ 8 is also in EVEN.
By Rule 2, x = 6, y = 8→ 14 is also in EVEN. �

Why is this definition be�er?

4 / 17



INTEGERS

Example

1 1 is in INTEGERS

2 If x is in INTEGERS, then so is x + 1.

Note: we will omit rule 3 from now on

If we wanted the set INTEGERS to include positive and negative
integers, we need to change our definition:

Example

1 1 is in INTEGERS

2 If x and y are both in INTEGERS, then so are x + y and x − y .
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POSITIVE
Example

1 x is in POSITIVE

2 If x and y are both in POSITIVE, then so are x + y and xy .

Problem: there no base for x

Example (An A�empted Variant)

1 x is in INTEGERS, "." is a decimal point, and y is any finite string
of digits, even one starting with 0’s, then x .y is in POSITIVE

Problem 1: doesn’t generate all real numbers e.g. π .
Problem 2: definition is not recursive

Example (A Be�er Definition)

1 1 is in POSITIVE

2 If x and y are in POSITIVE, then so are x + y , x ∗ y , and x/y

This defines some set, but not all... 6 / 17



POLYNOMIAL

A polynomial is a finite sum of terms, each of which is of the form: a
real number times a power of x (that may be x0 = 1)

Example

1 Any number is in POLYNOMIAL

2 The variable x is in POLYNOMIAL

3 If p and q are in POLYNOMIAL, then so are p + q, p − q,(p), pq

Problem
Show 3x2 + 7x − 9 is in POLYNOMIAL
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POLYNOMIAL

Problem
Show 3x2 + 7x − 9 is in POLYNOMIAL

Proof.
By Rule 1: 3 is in POLYNOMIAL.
By Rule 2: x is in POLYNOMIAL.
By Rule 3: (3)(x) is in POLYNOMIAL; call it 3x .
By Rule 3: (3x)(x) is in POLYNOMIAL; call it 3x2.
By Rule 1: 7 is in POLYNOMIAL; call it 3x2.
By Rule 3: (7)(x) is in POLYNOMIAL; call it 7x .
By Rule 3: 3x2 + 7x is in POLYNOMIAL.
By Rule 1: −9 is in POLYNOMIAL.
By Rule 3: 3x2 + 7x − 9 is in POLYNOMIAL. �
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Advantages and Disadvantages of POLYNOMIAL

Advantages

• sums and products of polynomials are obviously polynomials
• if we have a proof for di�erentiable, we can show all

polynomials are di�erentiable
• AND we don’t need to give the best algorithm for it

Disadvantages

• Tedious building blocks
•

Reminder: this is computer theory – we are interested in proving
that tasks are possible, not necessarily knowing the best algorithm in
how to do it
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Examples

Example (x+)

1 x is in L1

2 If w is any word in L1, then xw is also in L1

Example (x∗)

1 λ is in L2

2 If w is any word in L2, then xw is also in L1

Example (xodd )

1 λ is in L3

2 If w is any word in L3, then xxw is also in L3
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Examples

Example (INTEGER)

1 1 2 3 4 5 6 7 8 9 are in INTEGERS

2 If w is any word in INTEGERS, then
w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 are also in INTEGERS

Example (Kleene Closure)

1 If S is a language, then all the words of S are in S∗

2 λ is in S∗

3 If x and y are in S∗, then so is the concatenation xy

Note: this definition of Kleene Closure is easier to understand.

11 / 17



Arithmetic Expressions

What is a valid arithmetic expression?

Alphabet

Σ = { 0 1 2 3 4 5 6 7 8 9 + − ∗ / ( ) }

Invalid Strings?

(3 + 5) + 6) 2(/8 + 9) (3 + (4−)8) 2) − (4

Problem
What makes a valid string?

Solution
Recursive Definition...
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Recursive Definition for Arithmetic Expressions

1 Any number (positive, negative, or zero) is in AE
2 If x is in AE, then so are:

i (x)
ii −x (provided x does not already start with a minus sign)

3 If x and y are in AE, then so are:
i x + y (if the first symbol in y is not + or −)
ii x − y (if the first symbol in y is not + or −)
iii x ∗ y
iv x/y
v x ∗ ∗y (notation for exponentiation)

There may be strings which we may not know the meaning of, but
definitely argue that strings are a part of AE.

For example: 8/4/2 could mean 8/(4/2) or (8/4)/2 depending on
order of operations
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Examples with Arithmetic Expressions

Theorem
An arithmetic expression cannot contain the character $

Proof.
$ is not part of any number, so it cannot be induced (by Rule 1)

If a string, x , doesn’t contain $, then neither can (x) or −x (by Rule 2)

If neither x nor y contains $, then neither do any induced (by Rule 3)

The character $ can never be inserted into AE �
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Examples with Arithmetic Expressions

Theorem
No AE can begin or end with symbol /

Proof.
No number begins or ends with / so it cannot occur (by Rule 1).

Any AE formed by Rule 2 must begin and end with parentheses or
begin with a minus sign.

If x does not already begin with / and y does not end with /, then
any AE formed by any clause in Rule 3 will not begin or end with a /.

These rules prohibit an expression beginning or ending with /. �
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Examples with Arithmetic Expressions

Theorem
No AE can contain the substring //

Proof (by contradiction).

• Let us suppose there were some AE that contained the substring
//. Let a shortest of these be a string w .
• w must be formed by some sequence of applying Rules 1, 2, and

3. The last rule used producing w must have been Rule 3iv.
• Spli�ing w from Rule 3iv would result in w1/w2 – meaning that
w1 would need to end with / or w2 would need to start with /.
• Since there is no rule that possibly yields a trailing / or leading /,

then w1 or w2 must contain //.
• Since we claimed w was the shortest AE that contained the

substring //, this is not feasible.
• Therefore, nothing in the set AE can have the substring //. �
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Well-Formed Formulas

Σ = {¬ → ( ) a b c d . . .}
1 Any single Latin le�er is a WFF.

2 If p is a WFF, the so are (p) and ¬p.

3 If p and q are WFFs, then so is p→ q

• p→
• → p
• (p→
• p)
• p) → p(
• p→ ((p→ p) → q)
• ¬p→ p
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