Another look at Bayesian inference

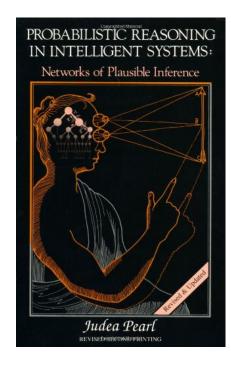
- A general scenario:
 - Query variables: X
 - Evidence (observed) variables and their values: E = e
 - Unobserved variables: Y
- Inference problem: answer questions about the query variables given the evidence variables
 - This can be done using the posterior distribution $P(X \mid E = e)$
 - In turn, the posterior needs to be derived from the full joint P(X, E, Y)

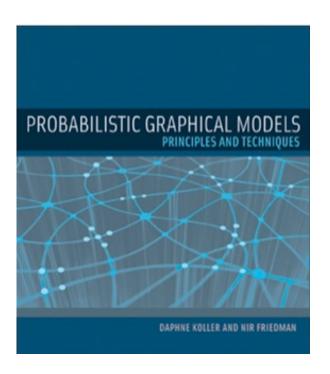
$$P(X | E = e) = \frac{P(X, e)}{P(e)} \propto \sum_{y} P(X, e, y)$$

Bayesian networks are a tool for representing joint probability distributions efficiently

Bayesian networks

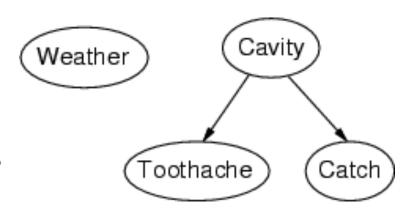
- More commonly called graphical models
- A way to depict conditional independence relationships between random variables
- A compact specification of full joint distributions





Bayesian networks: Structure

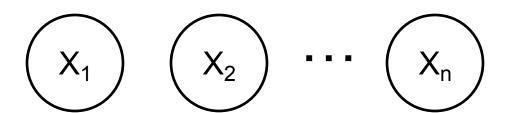
Nodes: random variables



- Arcs: interactions
 - An arrow from one variable to another indicates direct influence
 - Must form a directed, acyclic graph

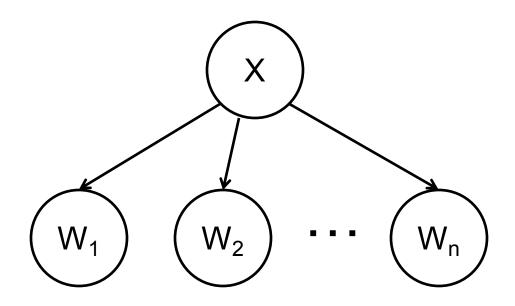
Example: N independent coin flips

Complete independence: no interactions



Example: Naïve Bayes document model

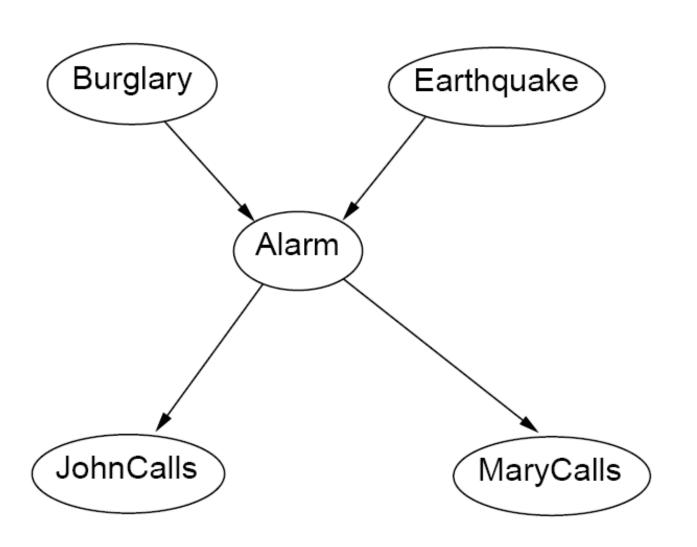
- Random variables:
 - X: document class
 - $-W_1, ..., W_n$: words in the document

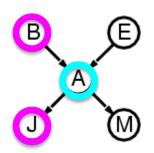


- I have a burglar alarm that is sometimes set off by minor earthquakes. My two neighbors, John and Mary, promised to call me at work if they hear the alarm
- Example inference tasks
 - Suppose Mary calls and John doesn't call. What is the probability of a burglary?
 - Suppose there is a burglary and no earthquake. What is the probability of John calling?
 - Suppose the alarm went off. What is the probability of burglary?

– ...

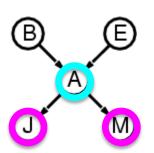
- I have a burglar alarm that is sometimes set off by minor earthquakes. My two neighbors, John and Mary, promised to call me at work if they hear the alarm
- What are the random variables?
 - Burglary, Earthquake, Alarm, John, Mary
- What are the direct influence relationships?
 - A burglar can set the alarm off
 - An earthquake can set the alarm off
 - The alarm can cause Mary to call
 - The alarm can cause John to call





 Suppose the alarm went off. Does knowing whether there was a burglary change the probability of John calling?

P(John | Alarm, Burglary) = P(John | Alarm)

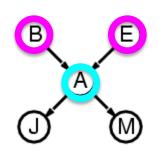


 Suppose the alarm went off. Does knowing whether there was a burglary change the probability of John calling?

```
P(John | Alarm, Burglary) = P(John | Alarm)
```

 Suppose the alarm went off. Does knowing whether John called change the probability of Mary calling?

```
P(Mary | Alarm, John) = P(Mary | Alarm)
```



 Suppose the alarm went off. Does knowing whether there was a burglary change the probability of John calling?

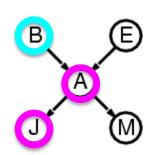
```
P(John | Alarm, Burglary) = P(John | Alarm)
```

 Suppose the alarm went off. Does knowing whether John called change the probability of Mary calling?

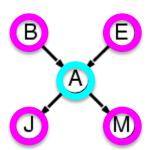
```
P(Mary | Alarm, John) = P(Mary | Alarm)
```

 Suppose the alarm went off. Does knowing whether there was an earthquake change the probability of burglary?

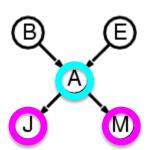
```
P(Burglary | Alarm, Earthquake) != P(Burglary | Alarm)
```



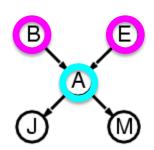
- Suppose the alarm went off. Does knowing whether there was a burglary change the probability of John calling?
 P(John | Alarm, Burglary) = P(John | Alarm)
- Suppose the alarm went off. Does knowing whether John called change the probability of Mary calling?
 P(Mary | Alarm, John) = P(Mary | Alarm)
- Suppose the alarm went off. Does knowing whether there was an earthquake change the probability of burglary?
 P(Burglary | Alarm, Earthquake) != P(Burglary | Alarm)
- Suppose there was a burglary. Does knowing whether
 John called change the probability that the alarm went off?
 P(Alarm | Burglary, John) != P(Alarm | Burglary)



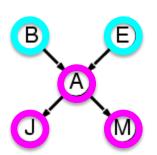
- John and Mary are conditionally independent of Burglary and Earthquake given Alarm
 - Children are conditionally independent of ancestors given parents



- John and Mary are conditionally independent of Burglary and Earthquake given Alarm
 - Children are conditionally independent of ancestors given parents
- John and Mary are conditionally independent of each other given Alarm
 - Siblings are conditionally independent of each other given parents



- John and Mary are conditionally independent of Burglary and Earthquake given Alarm
 - Children are conditionally independent of ancestors given parents
- John and Mary are conditionally independent of each other given Alarm
 - Siblings are conditionally independent of each other given parents
- Burglary and Earthquake are not conditionally independent of each other given Alarm
 - Parents are not conditionally independent given children



- John and Mary are conditionally independent of Burglary and Earthquake given Alarm
 - Children are conditionally independent of ancestors given parents
- John and Mary are conditionally independent of each other given Alarm
 - Siblings are conditionally independent of each other given parents
- Burglary and Earthquake are not conditionally independent of each other given Alarm
 - Parents are not conditionally independent given children
- Alarm is not conditionally independent of John and Mary given Burglary and Earthquake
 - Nodes are not conditionally independent of children given parents
- General rule: each node is conditionally independent of its non-descendants given its parents

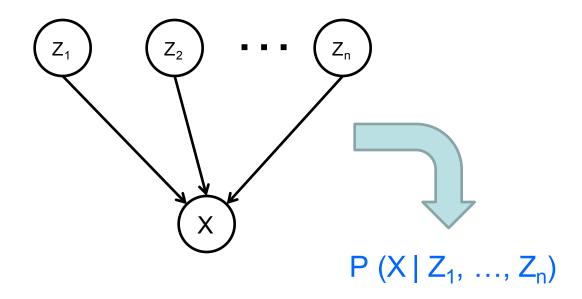
Conditional independence and the joint distribution

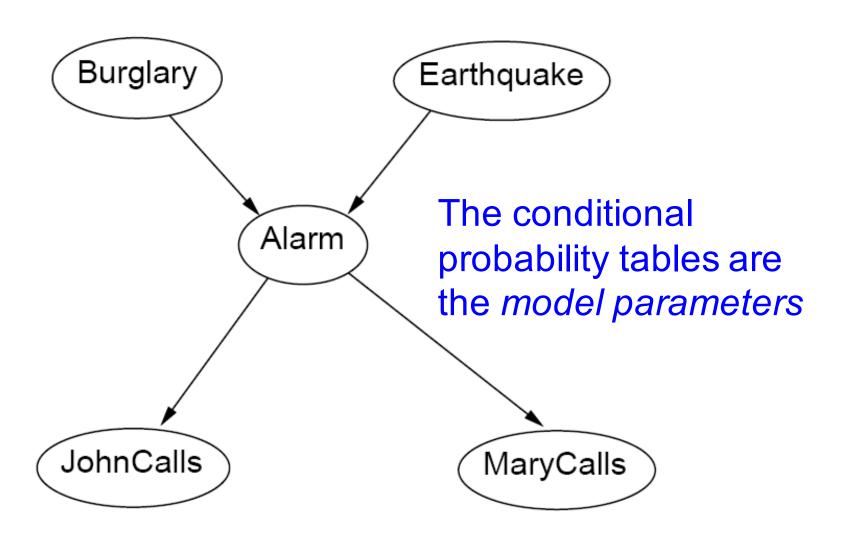
- General rule: each node is conditionally independent of its non-descendants given its parents
- Suppose the nodes X₁, ..., X_n are sorted in topological order (parents before children)
- To get the joint distribution $P(X_1, ..., X_n)$, use chain rule:

$$P(X_1, ..., X_n) = \prod_{i=1}^n P(X_i \mid X_1, ..., X_{i-1})$$
$$= \prod_{i=1}^n P(X_i \mid Parents(X_i))$$

Conditional probability distributions

 To specify the full joint distribution, we need to specify a conditional distribution for each node given its parents:
 P(X|Parents(X))

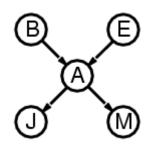




The joint probability distribution

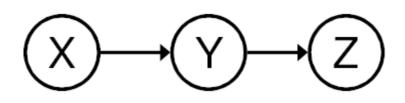
$$P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i | Parents(X_i))$$

For example, P(j, m, a, ¬b, ¬e)
 = P(¬b) P(¬e) P(a | ¬b, ¬e) P(j | a) P(m | a)



Conditional independence

- General rule: X is conditionally independent of every non-descendant node given its parents
- Example: causal chain



X: Low pressure

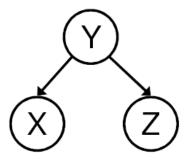
Y: Rain

Z: Traffic

- Are X and Z independent?
- Is Z independent of X given Y?

Conditional independence

Common cause



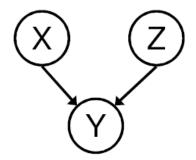
Y: Project due

X: Newsgroup

busy

Z: Lab full

Common effect



X: Raining

Z: Ballgame

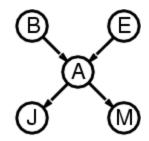
Y: Traffic

- Are X and Z independent?
 - No
- Are they conditionally independent given Y?
 - Yes

- Are X and Z independent?
 - Yes
- Are they conditionally independent given Y?
 - No

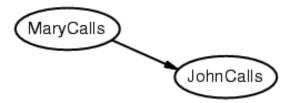
Compactness

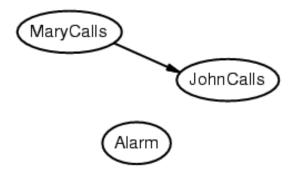
- Suppose we have a Boolean variable X_i with k Boolean parents. How many rows does its conditional probability table have?
 - 2^k rows for all the combinations of parent values
 - Each row requires one number for $P(X_i = true \mid parent values)$
- If each variable has no more than k parents, how many numbers does the complete network require?
 - $O(n \cdot 2^k)$ numbers vs. $O(2^n)$ for the full joint distribution
- How many numbers for the burglary network?
 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 2⁵-1 = 31)

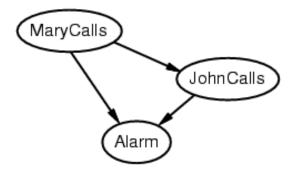


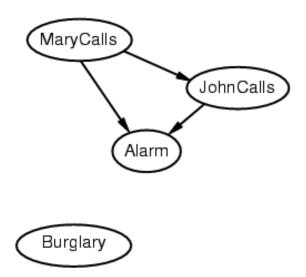
Constructing Bayesian networks

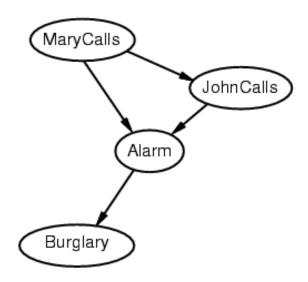
- 1. Choose an ordering of variables X₁, ..., X_n
- 2. For i = 1 to n
 - add X_i to the network
 - select parents from $X_1, ..., X_{i-1}$ such that $P(X_i | Parents(X_i)) = P(X_i | X_1, ..., X_{i-1})$

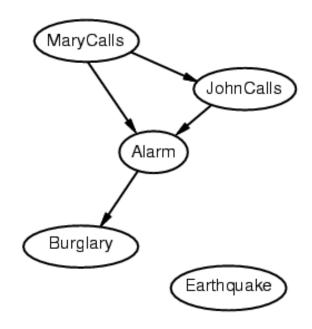


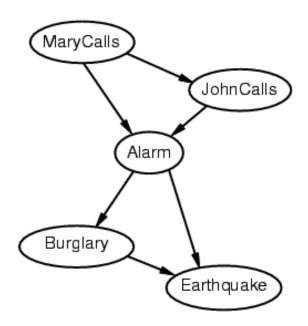




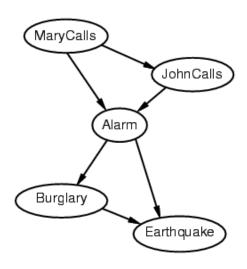








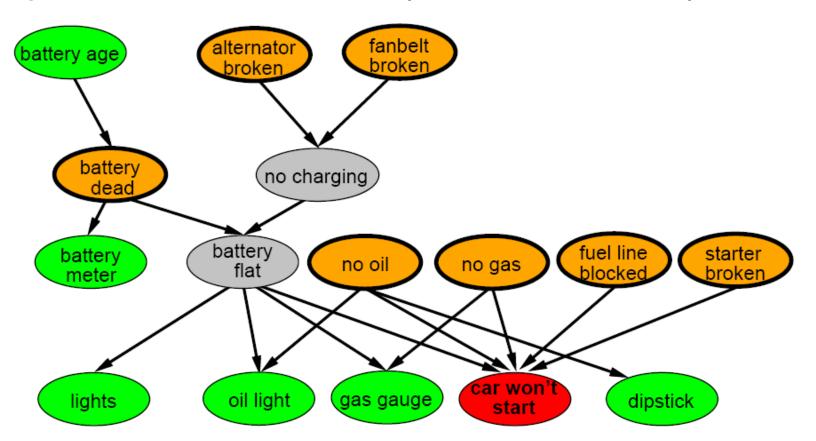
Example contd.



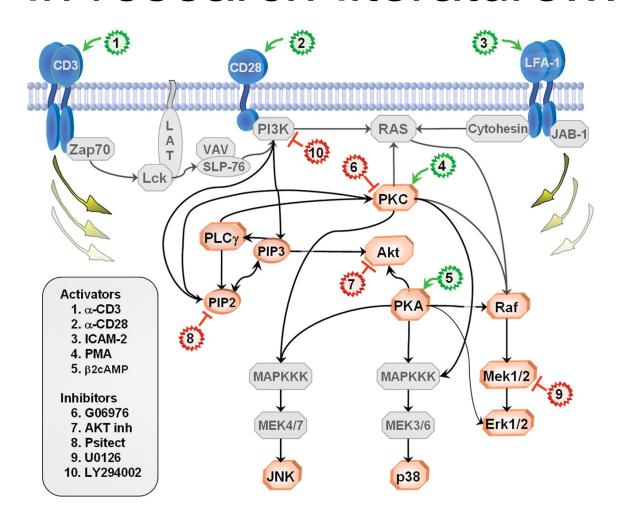
- Deciding conditional independence is hard in noncausal directions
 - The causal direction seems much more natural
- Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed (vs. 10 for the causal ordering)

A more realistic Bayes Network: Car diagnosis

- Initial observation: car won't start
- Orange: "broken, so fix it" nodes
- Green: testable evidence
- Gray: "hidden variables" to ensure sparse structure, reduce parameteres



In research literature...



Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data Karen Sachs, Omar Perez, Dana Pe'er, Douglas A. Lauffenburger, and Garry P. Nolan (22 April 2005) *Science* **308** (5721), 523.

In research literature...

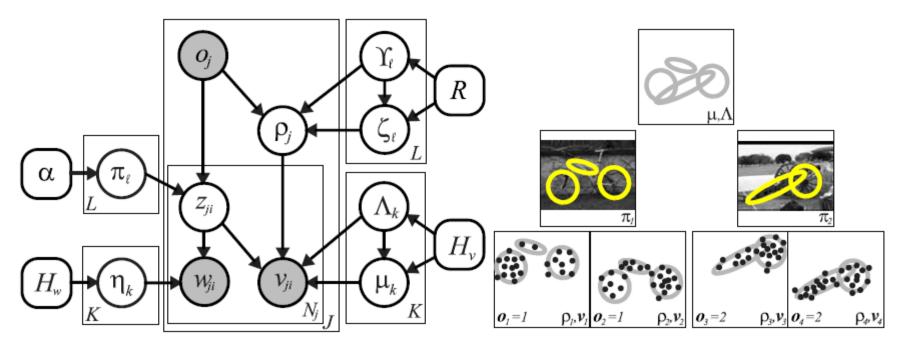


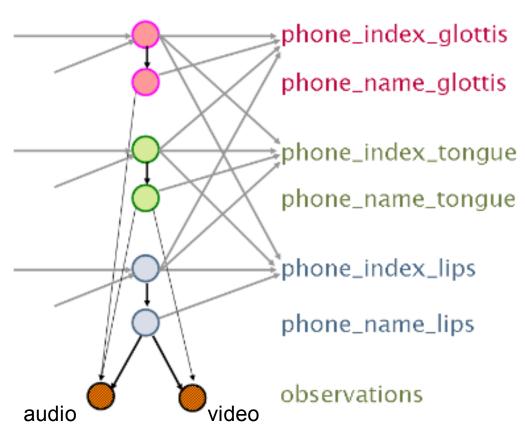
Fig. 3 A parametric, fixed-order model which describes the visual appearance of L object categories via a common set of K shared parts. The j^{th} image depicts an instance of object category o_j , whose position is determined by the reference transformation ρ_j . The appearance w_{ji} and position v_{ji} , relative to ρ_j , of visual features are determined

by assignments $z_{ji} \sim \pi_{o_j}$ to latent parts. The cartoon example illustrates how a wheel part might be shared among two categories, *bicycle* and *cannon*. We show feature positions (but not appearance) for two hypothetical samples from each category

Describing Visual Scenes Using Transformed Objects and Parts

E. Sudderth, A. Torralba, W. T. Freeman, and A. Willsky. International Journal of Computer Vision, No. 1-3, May 2008, pp. 291-330.

In research literature...



<u>Audiovisual Speech Recognition with Articulator Positions as Hidden Variables</u>

Mark Hasegawa-Johnson, Karen Livescu, Partha Lal and Kate Saenko

International Congress on Phonetic Sciences 1719:299-302, 2007

Summary

- Bayesian networks provide a natural representation for (causally induced) conditional independence
- Topology + conditional probability tables
- Generally easy for domain experts to construct