
WEB APP ARCHITECTURES:
MULTI-TIER (2-TIER, 3-TIER) 

MODEL-VIEWER-CONTROLLER (MVC)

REST ARCHITECTURAL STYLE

Slides created by Manos Papagelis

Based on materials by Marty Stepp, M. Ernst, S. Reges, D. Notkin, R. Mercer, R. Boswell,Wikipedia



Overview

 Data Independence in Relational Databases

 N-tier Architectures

 Design Patterns

 The MVC Design Pattern

 REST Architectural Style



Data Independence in Rel. DBMS



4

User1

View1

User2

View2

Conceptual Schema

Internal Schema

Disk

What users see

Tables and links

Files on disk

Each level is independent of the levels below

Database Architecture With Views



Logical and Physical Independence

User1

View1

User2

View2

Conceptual Schema

Internal Schema

Disk

Each level is independent of the levels below

Logical 

Independence

Physical

independence



Data Independence

 Logical Independence: The ability to change the logical 
schema without changing the external schema or application 
programs

 Can add new fields, new tables without changing views

 Can change structure of tables without changing view

 Physical Independence: The ability to change the physical 
schema without changing the logical schema

 Storage space can change

 Type of some data can change for reasons of optimization

LESSON: Keep the VIEW (what the user sees ) independent of 

the MODEL (domain knowledge)



N-tier architectures



Significance of “Tiers”

 N-tier architectures have the same components

 Presentation

 Business/Logic

 Data

 N-tier architectures try to separate the components 

into different tiers/layers

 Tier: physical separation

 Layer: logical separation



1-Tier Architecture

 All 3 layers are on the same machine

 All code and processing kept on a single machine

 Presentation, Logic, Data layers are tightly connected

 Scalability: Single processor means hard to increase volume of processing

 Portability: Moving to a new machine may mean rewriting everything

 Maintenance: Changing one layer requires changing other layers



2-Tier Architecture

 Database runs on Server

 Separated from client

 Easy to switch to a different database

 Presentation and logic layers still tightly connected

 Heavy load on server

 Potential congestion on network

 Presentation still tied to business logic

ServerClient



3-Tier Architecture

 Each layer can potentially run on a different machine

 Presentation, logic, data layers disconnected

ServerClient DB Server



A Typical 3-tier Architecture

Architecture Principles

 Client-server architecture

 Each tier (Presentation, 

Logic, Data) should be 

independent and should not 

expose dependencies 

related to the 

implementation

 Unconnected tiers should not 

communicate

 Change in platform affects 

only the layer running on 

that particular platform

http://upload.wikimedia.org/wikipedia/en/6/66/Overview_of_a_three-tier_application.png
http://upload.wikimedia.org/wikipedia/en/6/66/Overview_of_a_three-tier_application.png


A Typical 3-tier Architecture

Presentation Layer

 Provides user interface

 Handles the interaction with 

the user

 Sometimes called the GUI or 

client view or front-end

 Should not contain business 

logic or data access code

http://upload.wikimedia.org/wikipedia/en/6/66/Overview_of_a_three-tier_application.png
http://upload.wikimedia.org/wikipedia/en/6/66/Overview_of_a_three-tier_application.png


A Typical 3-tier Architecture

Logic Layer

 The set of rules for 

processing information 

 Can accommodate many 

users

 Sometimes called 

middleware/back-end

 Should not contain 

presentation or data access 

code

http://upload.wikimedia.org/wikipedia/en/6/66/Overview_of_a_three-tier_application.png
http://upload.wikimedia.org/wikipedia/en/6/66/Overview_of_a_three-tier_application.png


A typical 3-tier Architecture

Data Layer

 The physical storage layer 

for data persistence

 Manages access to DB or file 

system

 Sometimes called back-end

 Should not contain 

presentation or business logic 

code

http://upload.wikimedia.org/wikipedia/en/6/66/Overview_of_a_three-tier_application.png
http://upload.wikimedia.org/wikipedia/en/6/66/Overview_of_a_three-tier_application.png


The 3-Tier Architecture for Web Apps

 Presentation Layer

Static or dynamically generated content rendered by the 
browser (front-end)

 Logic Layer

A dynamic content processing and generation level 
application server, e.g., Java EE, ASP.NET, PHP, ColdFusion 
platform (middleware)

 Data Layer

A database, comprising both data sets and the database 
management system or RDBMS software that manages and 
provides access to the data (back-end)



3-Tier Architecture - Advantages

 Independence of Layers

 Easier to maintain

 Components are reusable

 Faster development (division of work)

Web designer does presentation

 Software engineer does logic

 DB admin does data model



Design Patterns



Design Problems & Decisions

 Construction and testing

 how do we build a web application?

 what technology should we choose?

 Re-use

 can we use standard components?

 Scalability

 how will our web application cope with large numbers of requests?

 Security

 how do we protect against attack, viruses, malicious data access, denial 
of service?

 Different data views

 user types, individual accounts, data protection

Need for general and reusable solution: Design Patterns



What is a Design Pattern?

 A general and reusable solution to a commonly 

occurring problem in the design of software

 A template for how to solve a problem that has 

been used in many different situations

 NOT a finished design

 the pattern must be adapted to the application

 cannot simply translate into code



Origin of Design Patterns

 Architectural concept by Christopher 
Alexander (1977/79)

 Adapted to OO Programming by Beck and 
Cunningham (1987)

 Popularity in CS after the book: “Design 
Patterns: Elements of Re-useable Object-
oriented software”, 1994. Erich Gamma, 
Richard Helm, Ralph Johnson, John Vlissides

 Now widely-used in software engineering



The MVC Design Pattern



Design Problem

 Need to change the look-and-feel without changing 

the core/logic

 Need to present data under different contexts (e.g., 

powerful desktop, web, mobile device). 

 Need to interact with/access data under different 

contexts (e.g., touch screen on a mobile device, 

keyboard on a computer)

 Need to maintain multiple views of the same data 

(list, thumbnails, detailed, etc.)



Design Solution

 Separate core functionality from the presentation 

and control logic that uses this functionality

 Allow multiple views to share the same data model

 Make supporting multiple clients easier to 

implement, test, and maintain



The Model-View-Controller Pattern

Design pattern for graphical systems

that promotes separation between

model and view

With this pattern the logic required

for data maintenance (database,

text file) is separated from how the

data is viewed (graph, numerical)

and how the data can be interacted

with (GUI, command line, touch)



The MVC Pattern

 Model 

 manages the behavior and data of the 
application domain

 responds to requests for information 
about its state (usually from the view)

 follows instructions to change state 
(usually from the controller)

 View 

 renders the model into a form suitable 
for interaction, typically a user interface 
(multiple views can exist for a single 
model for different purposes)

 Controller 

 receives user input and initiates a 
response by making calls on model 
objects

 accepts input from the user and instructs 
the model and viewport to perform 
actions based on that input



The MVC Pattern (in practice)

 Model 

 Contains domain-specific knowledge

 Records the state of the application 

 E.g., what items are in a shopping cart

 Often linked to a database

 Independent of view

 One model can link to different views

 View 

 Presents data to the user

 Allows user interaction

 Does no processing

 Controller 

 defines how user interface reacts to user input (events)

 receives messages from view (where events come from)

 sends messages to model (tells what data to display)



The MVC for Web Applications

 Model

 database tables (persistent data)

 session information (current system state data)

 rules governing transactions

 View

 (X)HTML

 CSS style sheets

 server-side templates

 Controller

 client-side scripting

 http request processing

 business logic/preprocessing



MVC Advantages

 Clarity of Design

 model methods give an API for data and state

 eases the design of view and controller

 Efficient Modularity

 any of the components can be easily replaced

 Multiple Views

 many views can be developed as appropriate

 each uses the same API for the model

 Easier to Construct and Maintain

 simple (text-based) views while constructing

 more views and controllers can be added

 stable interfaces ease development

 Distributable

 natural fit with a distributed environment



3-tier Architecture vs. MVC Architecture

 Communication

 3-tier: The presentation layer never communicates directly 
with the data layer-only through the logic layer (linear 
topology)

 MVC: All layers communicate directly (triangle topology)

 Usage

 3-tier: Mainly used in web applications where the client, 
middleware and data tiers ran on physically separate 
platforms

 MVC: Historically used on applications that run on a single 
graphical workstation (applied to separate platforms as 
Model 2)



REST API & RESTful Web Services

REST ARCHITECTURAL STYLE

Slides by Ahmed Shah Mashiyat



REST - Representational State Transfer

“REST is just a set of conventions about how to use HTTP”

Instead of having randomly named setter and getter URLs and using GET for all the 

getters and POST for all the setters, we try to have the URLs identify resources, and 

then use the HTTP actions GET, POST, PUT and DELETE to do stuff to them. So instead 

of

GET /get_article?id=1

POST /delete_article?id=1

You would do

GET /articles/1/

DELETE /articles/1/
http://stackoverflow.com/questions/2191049/what-is-the-advantage-of-using-rest-instead-of-non-rest-http



REST API

We need two basic URLs per resource

→ One for a collection of the resource

/dogs

→ The other one is for a particular resource.

/dogs/1



REST API

GET

Read a specific resource (by an identifier) or a 

collection of resources.

PUT

Update a specific resource (by an identifier) or a 

collection of resources. Can also be used to create a 

specific resource if the resource identifier is know 

before hand.



REST API

DELETE

Remove/delete a specific resource by an identifier.

POST

Create a new resource. Also a catch-all verb for 

operations that don't fit into the other categories.



REST API

To show association (collection within a collection):

/owner/123/dogs

Or

A bit more complex

/dogs?color=white&location=toronto



REST API - Idempotence

Same result over unlimited number of calls, since we are 

dealing with same resources.

However, delete may return 404 error in subsequent 

calls if not handled properly.



REST API – Best Practices

→ think about “resources”

→ elements & collections

→ map out the 4 methods for each

→ Prefer Nouns, Plurals, Concrete

→ Use Parameters for more advanced queries


