CSCI 340: Computational Models

R

Finite Automata

Chapter 5 Department of Computer Science

Aside: Discussion on board games and states

- Where can pieces exist on a board?
- How do pieces move? (deterministic)
- When is the game over?

When we consider a "map" of all of the states and where they go, we create a **state diagram**

A **finite automaton** is a collection of three things:

- A finite set of states, one of which is designated as the initial state, called the start state, and some (maybe none) of which are designated as final states.
- **2** An **alphabet** Σ of possible input letters
- A finite set of transitions that tell for each state and for each letter of the input alphabet which state to go to next.

A Brief Example

- Three states: x, y, z. Of which x is the starting state and z is the only final state
- **2** $\Sigma = \{ a \ b \}$
- Transition Rules:
 - **1** From state *x* and input *a*, go to state *y*.
 - Prom state x and input b, go to state z.
 - S From state y and input a, go to state x.
 - I From state y and input b, go to state z.
 - **5** From state *z* and input *any* , go to state *z*.

This defines a language recognizer. What language does it accept?

Definition of FA as Transition Table

	а	b
Start x	У	Ζ
У	X	Ζ
Final z	Ζ	Ζ

- states are listed along the left
- alphabet characters are listed along the top
- The "cell" at the intersection of a *state* and *character* indicate which *state* should be transitioned to

• A finite set of states $Q = \{q_0 \ q_1 \ q_2 \ \ldots\}$ of which q_0 is the start.

2 A subset of *Q* called the final states.

- **3** An alphabet $\Sigma = \{x_1 \ x_2 \ x_3 \ ...\}.$
- **4** A transition function mapping each state-letter pair with a state:

$$\delta(q_i, x_j) = x_k$$

NOTE: Every state has as many **outgoing edges** as there are letters in the alphabet. It is possible for a state to have no **incoming edges** or to have many.

Transition Diagram

Another Example

Question

What language does this FA accept?

Simplification

Another Example

Question

What language does this FA accept?

Simplification

Finite Automaton Accepting Everything $\Sigma = \{a, b\}$

Finite Automaton Accepting Everything $\Sigma = \{a, b\}$

Finite Automaton Accepting Nothing $\Sigma = \{a, b\}$

Examples

Finite Automaton Accepting Everything $\Sigma = \{a, b\}$

Finite Automaton Accepting Nothing $\Sigma = \{a, b\}$

Accepting an even-length string

Suppose we wanted to define an FA which accepts any string of an even length

- How would we do this **programmatically**?
- How can we represent this with states?

Suppose we wanted to define an FA which accepts any string of an even length

- How would we do this **programmatically**?
- How can we represent this with states?

Accepting an even-length string

Suppose we wanted to define an FA which accepts any string of an even length

- How would we do this programmatically?
- How can we represent this with states?

 $\mathbf{a}(\mathbf{a} + \mathbf{b})^*$

a:

 $(\mathbf{a} + \mathbf{b})^*$:

 $\mathbf{a}(\mathbf{a} + \mathbf{b})^*$

(**a** + **b**)*:

Question

What if we encounter a *b* in q_0 ?

An extension on $\mathbf{a}(\mathbf{a} + \mathbf{b})^*$

An extension on $\mathbf{a}(\mathbf{a} + \mathbf{b})^*$

All of these are equivalent!

Matching strings with triple letters (aaa or bbb)

• Sequence of *a*'s

Matching strings with triple letters (aaa or bbb)

• Sequence of *a*'s or *b*'s

Matching strings with triple letters (aaa or bbb)

· Proper state transitions when sequence broken

Construct FAs which accept the following:

- only the exact string **baa**
- all words not ending in *b*
- all words with an odd number of *a*'s
- all words with different first and last letters
- all words with length divisible by 3

Three cases:

🚺 aa

- **0** bb
- (ab + ba)(aa + bb)(ab + ba)

Revisiting EVEN-EVEN

Three cases:

- 1 aa handled here
- **2** bb
- (ab + ba)(aa + bb)(ab + ba)

Revisiting EVEN-EVEN

Three cases:

2 bb handled here

(ab + ba)(aa + bb)(ab + ba)

Revisiting EVEN-EVEN

Three cases:

- 1 aa
- **2** bb
- (ab + ba)(aa + bb)*(ab + ba) handled here (q3 represents ab + ba)

Homework 2b

A

- Build an FA that accepts only the language of all words with b as the second letter. Show both the picture and the transition table for this machine and find a regular expression for the language.
- Find two FA's that satisfy these conditions: Between them they accept all words in (a + b)*, but there is no word accepted by both machines.
- **③** Describe the languages accepted by the following FA's:

(continued on next page)

Homework 2b

③ Describe the languages accepted by the following FA's:

