
CSCI 340: Computational Models

Grammatical Format

Chapter 13 Department of Computer Science

Regular Grammars

Some of the languages we’ve been defining with CFGs are regular

We have three possibilities:

1 All possible languages can be generated by CFGs

2 All regular languages can be generated by CFGs, and so can
some nonregular languages but not all possible languages

3 Some regular languages can be generated by CFGs (and some
cannot). Some nonregular languages can be generated by CFGs
(and maybe some cannot)

Which one is true?

1 / 17

Taking FAs and converting them to CFGs

Definition
A semiword is a string of terminals (maybe none) ending in a single
non-terminal

(terminal) (terminal) (terminal) . . . (terminal)(Nonterminal)

Theorem
Given any FA, there is a CFG that generates exactly the language
accepted by the FA.

Alternatively, all regular languages are context-free languages

2 / 17

Proof by constructive algorithm

Proof.

1 The nonterminals in the CFG will be all the names of the states
in the FA with the start state renamed to S

2 For every edge Qx
a
→ Qy , create the production:

Qx → aQy

Repeat for b edges

3 For every final state X create the production

X → Λ

�

3 / 17

Showing a CFG is regular

Theorem
If all of the productions in a given CFG fits one of the two forms:

Nonterminal→ semiword or Nonterminal→ word

where word may be Λ, then the language generated by this CFG is
regular

How can we prove this? Generate a transition graph!

Example

S → aaS | bbS | abX | baX | Λ

X → aaX | bbX | abS | baS

4 / 17

Killing Λ-Productions

�ote from the book:

“We have not yet commi�ed ourselves to a definite stand on the social
acceptability of Λ-productions (productions of the form N → Λ).
We have employed them, but we do not pay them equal wages. They
make our lives very di�icult in later discussions, so we must ask
ourselves, Do we need them at all?”

Answer: No

5 / 17

Bar-Hillel, Perles, and Shamir Theorems

Theorem
If L is a context-free language generated by a CFG that includes
Λ-productions, then there is a di�erent CFG that has no Λ-productions
that generates either the whole language L (if L doesn’t include λ) or
generates all the words in L that are not λ)

Definition
In a given CFG, we call a nonterminal N nullable if
• There is a production N → Λ or
• There is a derivation that starts at N and leads to Λ

N ⇒ . . .⇒ Λ

Goal
Fix all nullable nonterminals while removing all Λ-productions

6 / 17

Replacement Rules and Example

1 Delete all Λ-productions

2 Add the following productions: For every production

X→ old string

add new productions of the form X→ . . . where the right side
will account for any modification of the old string that can be
formed by deleting all possible subsets of nullable non-terminals.

Example

S → a | Xb | aYa

X → Y | Λ

Y → b | X

7 / 17

Example

S → a | Xb | aYa

X → Y | Λ

Y → b | X

Old Production Newly-formed Productions

X → Y Nothing
X → Λ Nothing
Y → X Nothing
S → Xb S → b
S → aYa S → aa

New CFG:
S → a | Xb | aYa | b | aa

X → Y

Y → b | X
8 / 17

Chalkboard Examples

Example

S → Xa S → a

X → aX | bX | Λ X → a | b

Example

S → XY

X → Zb X → b

Y → bW Y → b

Z → AB Z → A | B

W → Z nothing new

A→ aA | bA | Λ A→ a | b

B→ Ba | Bb | Λ B→ a | b

9 / 17

Killing Unit Productions

Theorem
If there is a CFG for the language L that has no Λ-productions, then
there is also a CFG for L with no Λ-productions and no unit productions

A unit production is a production of the form:

Nonterminal→ one Nonterminal

For every pair of nonterminals A and B, if the CFG has a unit
production A→ B or if there is a chain of unit productions leading
from A to B, such as

A⇒ X1 ⇒ X2 ⇒ . . .⇒ B

where X1 . . . Xn are some nonterminals introduce new productions!

If the non unit productions (from B) are B→ s1 | s2 | s3 | . . .

create the productions A→ s1 | s2 | s3 | . . .

Do this for all pairs A and B
10 / 17

Example

S → A | bb

A→ B | b

B→ S | a

We can first split the productions into two groups:

Unit Productions Decent Folks

S → A S → bb
A→ B A→ b
B→ S B→ a

11 / 17

Example (continued)

Now we can list all unit productions and sequences of unit
productions

S → A gives S → b
S → A→ B gives S → a
A→ B gives A→ a
A→ B→ S gives A→ bb
B→ S gives B→ bb
B→ S → A gives B→ b

The new CFG for this language is:

S → bb | b | a

A→ b | a | bb

B→ a | bb | b

12 / 17

Chomsky Normal Form

Separating terminals and non-terminal production rules seemed nice!

Theorem
If L is a language generated by some CFG, then there is another CFG
that generates all the non-λ words of L, all of whose productions are of
one of two basic forms:

1 Nonterminal→ string of only Nonterminals

2 Nonterminal→ one terminal

Form 2: Create a “capitalized” Nonterminal for each terminal:
• A→ a, B→ b

Form 1: Replace terminals with Nonterminal created for Form 2 if
they are on the right-hand side
• Before: S → aSa
• A�er: S → ASA

Note: “If it ain’t broke, don’t fix it” (Forms 1 and 2 may already exist)
13 / 17

CNF Example

S → X | YaY | aSb | b

X → YY | b

Y → aY | aaX

New Nonterminal states for terminals:

A→ a

B→ b

A�er replacement of a with A and b with B:

S → X | YAY | ASB | B

X → YY | B

Y → AY | AAX

A→ a

B→ b
14 / 17

Chomsky Normal Form

Definition
If a CFG has only productions of the following two forms, it is said to
be in Chomsky Normal Form or CNF

1 Nonterminal→ string of exactly two Nonterminals

2 Nonterminal→ one terminal

Theorem
For any context-free language L, the non-λ words of L can be generated
by a grammar in which all productions are in CNF.

Note: if L contained λ, then λ will be “dropped” from the resulting CFL
once converted to CNF

15 / 17

Chomsky Normal Form

Proof.

1 Assume we start with a CFG with no unit productions or
Λ-productions

2 Create Non-terminals for each terminal and replace in the
productions
• A→ a
• B→ b

3 Split all sequences of Non-terminals into productions with only
two Non-terminals on the right-hand side
• S → ABCDE
• S → AR1, R1 → BR2, R2 → CR3, R3 → DE
• Note that these R states are only used internally

4 The e�ect of our productions are the same. All R-states are in
CNF. All created Non-terminals from encapsulating terminals
are in CNF. The new grammar generates the same language as
the old grammar. �

16 / 17

Converting to CNF Example

Non-null palindrome is defined as:
S → aSa | bSb | a | b | aa | bb

Separate Terminals from Nonterminals:
S → ASA | BSB | A | B | AA | BB
A→ a
B→ b
Introduce R states:
S → AR1 | BR2 | A | B | AA | BB
R1 → SA
R2 → SB
A→ a
B→ b

17 / 17

