CSCI 340: Computational Models

Grammatical Format

Chapter 13

Regular Grammars

Some of the languages we’ve been defining with CFGs are regular

We have three possibilities:
@ All possible languages can be generated by CFGs

® All regular languages can be generated by CFGs, and so can
some nonregular languages but not all possible languages

® Some regular languages can be generated by CFGs (and some
cannot). Some nonregular languages can be generated by CFGs
(and maybe some cannot)

Which one is true?

17

Taking FAs and converting them to CFGs
__

A semiword is a string of terminals (maybe none) ending in a single
non-terminal

(terminal) (terminal) (terminal) . . . (terminal)(Nonterminal)

Theorem

Given any FA, there is a CFG that generates exactly the language
accepted by the FA.

Alternatively, all regular languages are context-free languages

2/17

Proof by constructive algorithm
__

® The nonterminals in the CFG will be all the names of the states
in the FA with the start state renamed to S

® For every edge Q, 5 Qy, create the production:
Q — aQ,
Repeat for b edges
©® For every final state X create the production
X— A

3/17

Showing a CFG is regular
__

If all of the productions in a given CFG fits one of the two forms:
Nonterminal — semiword or Nonterminal — word

where word may be A, then the language generated by this CFG is
regular

How can we prove this? Generate a transition graph!

Example

S — aaS | bbS | abX | baX | A
X — aaX | bbX | abS | baS

4/17

Killing A-Productions

Quote from the book:

“We have not yet committed ourselves to a definite stand on the social
acceptability of A-productions (productions of the form N — A).
We have employed them, but we do not pay them equal wages. They
make our lives very difficult in later discussions, so we must ask
ourselves, Do we need them at all?”

Answer: No

Bar-Hillel, Perles, and Shamir Theorems

g eoen

If L is a context-free language generated by a CFG that includes
A-productions, then there is a different CFG that has no A-productions
that generates either the whole language L (if L doesn’t include 1) or
generates all the words in L that are not 1)

In a given CFG, we call a nonterminal N nullable if
® There is a production N — A or

® There is a derivation that starts at N and leads to A

N=.. .=>A

Fix all nullable nonterminals while removing all A-productions

6/17

Replacement Rules and Example

@ Delete all A-productions
® Add the following productions: For every production
X — old string

add new productions of the form X — ... where the right side
will account for any modification of the old string that can be
formed by deleting all possible subsets of nullable non-terminals.

Example

S—al|Xb| aYa
X—>Y|A
Y > b|X

7/17

Example

S—al|Xb|aYa
X—>Y|A
Y—>b|X

Old Production Newly-formed Productions

X—-Y Nothing
X — A Nothing
Y - X Nothing
S— Xb S—b
S — aYa S — aa

N CFG:
ew S—a|Xb|aYal|b|aa

X—-Y
Y—>b|X

/17

Chalkboard Examples

|

S — Xa S—a
X - aX | bX| A X—>alb
S — XY

X — Zb X—b
Y - bW Y —> b
Z — AB Z—> A|B
W—-Z nothing new
A—> aA| bA| A A—alb

B— Ba| Bb| A B—alb

9/17

Killing Unit Productions

g Theorem |

If there is a CFG for the language L that has no A-productions, then
there is also a CFG for L with no A-productions and no unit productions

A unit production is a production of the form:
Nonterminal — one Nonterminal

For every pair of nonterminals A and B, ifthe CFG has a unit
production A — B or if there is a chain of unit productions leading
from A to B, such as

A= Xi=2X=>...=2 B
where X; ... X, are some nonterminals introduce new productions!

If the non unit productions (from B)are B— s1 | s | s3] . . .
create the productions A — s1 | sp | s3 | . ..

Do this for all pairs A and B

10/17

Example

S— A| bb
A—B|b
B—S|a

We can first split the productions into two groups:

Unit Productions

Decent Folks

S— A
A— B
B— S

S — bb
A—b
B— a

11/17

Example (continued)
|

Now we can list all unit productions and sequences of unit

productions

S—> A gives
S—A— B gives
A— B gives
A— B—S gives
B—>S gives
B—S— A gives
The new CFG for this language is:
S—bb|b|a
A—b|albb

B—a|bb|b

S—b
S—a
A—>a
A — bb
B — bb
B— b

12/17

Chomsky Normal Form

Separating terminals and non-terminal production rules seemed nice!

Theorem

If L is a language generated by some CFG, then there is another CFG
that generates all the non-A words of L, all of whose productions are of
one of two basic forms:

@ Nonterminal — string of only Nonterminals

® Nonterminal — one terminal

Form 2: Create a “capitalized” Nonterminal for each terminal:
° A—>agaB—b
Form 1: Replace terminals with Nonterminal created for Form 2 if
they are on the right-hand side
® Before: S — aSa
* After: S — ASA
Note: “If it ain’t broke, don’t fix it” (Forms 1 and 2 may already exist)

13/17

CNF Example

|
S—> X|YaY |aSb| b
X—>YY|b
Y — aY | aaX

New Nonterminal states for terminals:
A—>a
B— b

After replacement of a with A and b with B:
S— X | YAY | ASB| B
X—>YY|B
Y — AY | AAX
A—a
B—b

14/17

Chomsky Normal Form
_

If a CFG has only productions of the following two forms, it is said to
be in Chomsky Normal Form or CNF

©® Nonterminal — string of exactly two Nonterminals

® Nonterminal — one terminal

Theorem

For any context-free language L, the non-A words of L can be generated
by a grammar in which all productions are in CNF.

Note: if L contained A, then A will be “dropped” from the resulting CFL
once converted to CNF

15/17

Chomsky Normal Form

o Proof.

@ Assume we start with a CFG with no unit productions or
A-productions
® Create Non-terminals for each terminal and replace in the
productions
®* A—>a
®* B—>b
©® Split all sequences of Non-terminals into productions with only
two Non-terminals on the right-hand side
® S— ABCDE
® S— ARy, Ry = BRy, Ry = CR3, R3s — DE
® Note that these R states are only used internally
@ The effect of our productions are the same. All R-states are in
CNF. All created Non-terminals from encapsulating terminals
are in CNF. The new grammar generates the same language as

the old grammar. O
16/17

Converting to CNF Example

Non-null palindrome is defined as:

S—aSa|bSb|a|b|aa| bb

Separate Terminals from Nonterminals:

S— ASA|BSB|A|B|AA| BB
A—>a

B—b

Introduce R states:

S— AR/ | BR,|A| B| AA| BB
R; — SA

R, — SB

A—>a

B— b

17

17

