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Abstract 
The term “phishing” refers to a type of cyber attack in 
which the attacker sends fraudulent emails. What makes 
this email attack unique is that it often requests that the user 
follow an included link, where the user is asked to enter 
private information. This project explores the possibility of 
using natural language processing and machine learning 
techniques to differentiate between legitimate and phishing 
emails. Natural language processing tools used here 
include word tokenization, stemming, and stopword 
removal. These processes are used to prepare the emails for 
analysis by machine learning models by manipulating the 
text of the emails. Machine learning models look at 
samples of both types of email, attempt to decide the 
identifying factors of the two types of emails, and then 
classify unseen samples. A strong model will be able to 
identify a phishing email by analyzing the text of the email 
in addition to the characteristics of the included link. 
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1. Introduction 

Those who work to develop computer security measures 
are faced with the issue of creating a secure but usable 
system. There is no way to make a device 100% secure 
without making it unusable. One reason for this is that the 
user is actually a danger to the integrity of the system. In 
recent years, a method of attack called “phishing” has 
become more and more popular, and it relies primarily on 
human error and lack of awareness. 
“Phishing” refers to the use of social engineering to obtain 
personal information from system users [1]. One of the 
most popular forms of phishing attack is through email. A 
“phishing email” is received by a system user, and if that 
user is not trained to look out for phishing attacks, they may 
believe the email to be legitimate. The social engineering 
aspect of phishing involves crafting the language and 
visual design of phishing emails and websites to make 
them seem legitimate and to compel the user to submit 
personal information. If a user receives a phishing email, it 
likely appears to be from a legitimate source and asks the 
user to follow a link, which takes the user to a phishing 
website. Between the email and the site, the user is made 
to believe that there is some (usually urgent) reason to 
submit personal information, such as login credentials. The 

attacker can then use this information to perform future 
attacks. They now have access to the system, but can use 
the system while appearing as a legitimate user, thus 
avoiding detection by the computer’s intrusion detection 
system [2]. 
Because this kind of attack relies so heavily on social 
engineering, it can be very difficult to prevent. Phishing 
emails may be caught by spam filters, but this is certainly 
not always the case. Even if the email is caught by a spam 
filter, there is no guarantee that the user won’t open it 
anyway. The best way to prevent an attack it through 
focused filtering for phishing, and through education for 
users. Phishing can be particularly dangerous for larger 
businesses, where more system users means more ways for 
attackers to access login information. According to the 
Anti-Phishing Working Group, there were 364,424 
phishing websites detected from July to September of 
2016, which was actually a 25% decrease from the 
previous quarter, where they recorded record highs [2]. The 
number of unique reports of phishing attacks during this 
time frame also dipped, from 315,524 reports worldwide in 
the second quarter of this year to 229,251 in the third [2]. 
Regardless of the decline, hundreds of thousands of attacks 
in just a few months is still indicative of a major security 
concern. 
The goal of this project is to utilize machine learning and 
natural language processing techniques in order to develop 
a classifier to differentiate between phishing and non-
phishing emails. The purpose of such a classifier is two-
fold: 1) it could be used as part of a tool to filter email, 2) 
useful information can be gleaned from the attributes used 
by the classifier and this information can be used to better 
educate users on how to avoid becoming victims of 
phishing. 

2. Background 
Social engineering plays a big role in the success of 
phishing attacks. In order to provide a better idea of what 
to look for during text analysis, one must consider the 
social engineering aspect of the attack. According to 
Webroot, a computer security services provider, social 
engineering is an “art”, and involves “manipulating people 
so they give up confidential information” [3]. The aim is 
generally to obtain bank information or the passwords 
necessary to access the user’s personal or professional 
computer. In order to convince the user to give up this 
information, a phishing email may include a request to 
verify information, a notification stating that the user has 
won something, or a message asking for help [3]. In any 
case, the goal of the email is exploitation of the user’s trust 
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and curiosity. These trends were important to keep in mind 
during this research when attempting to distinguish 
between phishing and legitimate emails. For instance, the 
phishing email text often contained certain keywords such 
as “verify” or “bank”. 

One of the major problems with text analysis is high 
dimensionality of the feature space. High dimensionality 
occurs when there are a large number of variables to 
consider, which can make analysis more complex. In text 
analysis, each unique word is an individual variable, so this 
problem is particularly relevant. Verma and Hossain [4] 
handled this problem by defining the feature space further 
using SenseLearner and WordNet together. SenseLearner 
helps to differentiate the contexts of a word that may have 
multiple meanings. WordNet can then be used to find a set 
of synonyms for the word, so that the presence of 
synonyms between two emails can be detected [4]. These 
steps reduced the number of individual word variables to 
consider by equating sets of words as synonyms. 
Verma and Hossain [4] also incorporated a certain amount 
of Natural Language Processing (NLP) into their work. 
Performing NLP on a text dataset is a challenging task, but 
it is necessary in order to help break down the text into 
something that can be analyzed. It can also be used to 
further reduce the feature space. The authors used NLP 
techniques to break the text of each email into individual 
words; tag parts of speech; recognize named organizations, 
people and locations; normalize words to lowercase; 
remove stopwords; and reduce words to their bases through 
a process called “stemming” [4]. Further research of 
similar projects shows that this is a fairly standard set of 
techniques for processing text. Verma worked on a similar 
project involving phishing email text [5] in which the same 
NLP was performed. 
Another interesting product of [4] was the development of 
an “Action Detector” and a “Nonsensical Detector”. For 
classification purposes, the authors utilized pattern 
matching with these two sub-classifiers. They observed 
that the phishing emails often focused on some action to be 
performed by the email recipient, and that phishing emails 
not caught by this detector are often missed because the 
text is irrelevant to the subject, thus “nonsensical”. If an 
email falls into one of these categories, it can be marked by 
the sub-classifiers as more likely to be phishing. 

Similarly, [5] introduced the idea of “actionable” vs 
“informational” emails. Similar to the observations made 
in [4] which led to an “action detector”, the authors of [5] 
looked at the language in the email text to determine 
whether it is trying to convey a sense of urgency, threat, or 
concern, or is offering some incentive to performing an 
action. Because social engineering in phishing emails often 
uses some kind of story or scenario to convince the user to 
perform an action [3], this kind of language is more 
indicative of a phishing email. On the other hand, non-
phishing emails tend to be more informative and simple, or 
less story-based. The difference in language here 

contributes to the end algorithm. 
The analysis done by Basnet, Mukkamala, and Sung in [6] 
introduces a different approach to the phishing problem. As 
mentioned above, the authors’ work is based on various 
features of the websites linked in the phishing emails. Most 
of the values for the features are binary, and indicate the 
presence or absence of a certain quality. This data analysis 
does not require NLP, and is thus much less complex and 
time-consuming than research involving the actual email 
text. However, when creating a filter for phishing emails, 
using the data from the websites linked may not be the 
safest method to pursue, as it bring the user “closer” to the 
attacker. 
Another major difference between [6] and the other works 
mentioned here is the use of both supervised and 
unsupervised algorithms for classification. In supervised 
classification, a model is trained using a set of sample data, 
where each sample is associated with a “target” value. This 
target value is the correct identification for the sample. In 
unsupervised classification, the sample data is fed to the 
model without target values. The model then creates 
groupings in the data without knowledge of the correct 
identification. Basnet, etc. were studying phishing websites 
specifically, and their work shows the possibility of a 
successful classifier when using an unsupervised clustering 
method. However, the biggest success was with Support 
Vector Machines, which are supervised methods. 

3. Approach 
Most of the previous work on this subject focused on 
creating a phishing email filter. Some researchers used the 
email text, others used metadata from the link in the text. 
This paper focuses on the text analysis, with the analysis of 
link data designated as future work. 

A data set of legitimate emails was used alongside the 
phishing set, in order to compare characteristics of the two 
different types of emails. A classification model was built 
for this purpose, with the goal of understanding more about 
what makes phishing attacks successful. This involved 
looking at the characteristics that phishing emails tend to 
have, and determining whether anything can be learned 
about effective types of social engineering. Finally, most 
of the researchers mentioned above used statistical analysis 
as part of their processes alongside common machine 
learning algorithms. Some statistical-based methods may 
be used in future work, but the primary focus of this work 
thus far has been on the machine learning algorithms. 

4. Data 
The type of analysis performed compares the 
characteristics of a phishing email to the characteristics of 
a “regular” email. These non-phishing emails will be 
referred to as “ham” emails going forward, a term that is 
used in the dataset to represent non-spam emails. For this 
application, the features of large sets of both phishing and 
ham emails were examined, particularly the text of each 



email. This text data included the email sender, subject 
line, links, and, most importantly, the content of the email. 
Once this data was pulled from the email, some natural 
language processing techniques were used to further 
manipulate the text data and prepare it for machine learning 
analysis. 
The phishing emails come from the online Phishing Corpus 
[7]. The corpus was created from spam emails received 
over several years’ time by the corpus author. There are a 
wide range of emails included in the corpus. It contains a 
total of 4,550 emails, split into four files that each represent 
a different span of time during which the author collected 
the phishing emails. This is one of the few publicly 
available corpuses of only phishing emails, and many of 
the papers written about phishing emails since the corpus 
was published have used this same corpus, including [4], 
[5], and [6]. It is important to keep in mind that these are 
emails targeted toward an individual, which may be 
formatted differently than those sent throughout a company 
or aimed at gaining access to a larger organization. As 
such, it was important for the sake of consistency to keep 
the intended audience of the original email in mind when 
selecting a ham corpus. 
The ham emails come from the SpamAssassin public mail 
corpus [8]. This corpus was built to compare spam emails 
to non-spam, or “ham”, emails. Only the ham emails will 
be used, so there are no spam or phishing objects mixed in 
with the ham set. The data set includes 3,900 “easy” ham 
emails, which are easy to differentiate from spam. It also 
contains an additional 250 “hard” ham emails, which are 
more difficult to differentiate. This is a total of 4,150 ham 
emails, and each are viewed as individual text files. Since 
the difficulty of filtering different types of emails is not 
being studied, it is not necessary to keep the sets separated. 
However, it is beneficial that this set provides a wide range 
of email samples. This corpus was selected because the 
emails are not exclusively ones that were originally sent 
within a particular company, which is the case with some 
other ham corpuses. In this way, we can be sure that the 
original phishing and ham emails had similar intended 
audiences, and that our final results will not be skewed by 
dissimilar data in this way. 
For machine learning classification, it is important to build 
models using approximately the same number of objects 
for each class. The phishing set had about 400 more emails 
than the ham set, but a difference of only 400 emails isn’t 
significant considering the size of the datasets overall. 
However, at the end of the parsing stage, the size of the 
dataset was reevaluated to determine whether the sets were 
still balanced. Another factor to consider is the time and 
size burden of the dataset. Text data takes much longer to 
process than numerical data. Having to handle nearly 9,000 
email samples may be out of the question for certain 
applications simply because of how long it takes for the 
text to be processed and quantified in preparation for the 
machine learning process. 

5. Methods 
5.1 Parsing - Before the emails can be analyzed, the 
relevant information was parsed from the email files. The 
data extracted from the emails included the sender, subject, 
included links, and the email text. The sender, subject, and 
links, or references, could be gathered from the headers of 
each email. The email text was the last part of each email, 
although the emails were recorded differently in the ham 
and phishing corpuses. 

The ham emails were in individual text files. Parsing the 
email involved looking for keywords on each line of the 
header to find the pertinent information and then, once the 
message started, reading to the end of the text file. Since 
the message is the last component to appear in the file, the 
end of the file is also the end of the message content. 

The phishing emails were slightly more complicated. Each 
phishing file contained not one, but hundreds if not 
thousands of emails. The headers could be read similarly 
to the ham headers, but the email text contained some 
HTML. The BeautifulSoup package in Python was used to 
extract the important text data from the HTML. Again, the 
message was the last component of the email listed in the 
file before continuing to the next email’s header. So, once 
the end of the HTML had been reached, this also signified 
the end of the email. 

During the original parsing process for the phishing emails, 
it seemed as though about 3,300 emails were being ignored 
because they were not parsing cleanly. This still left 
enough samples to do some preliminary analysis, but it left 
a big gap in the dataset. Upon further inspection, it was 
discovered that the phishing parser was not always 
correctly identifying the end of each email. So, it was 
collecting as the “message” part of one the correct 
message, the header of the next email, and the message of 
the next email. After adjustments were made to the parser, 
about 3,700 could be cleanly parsed, and the parser could 
more easily detect the end of an email sample. Because of 
this, the dataset is not only larger, it is more accurate. 

In total, 3859 ham emails and 3719 phish emails were 
successfully parsed. From these, 3719 ham emails were 
used so that the phishing and ham samples were balanced. 
This set was then split into a training set (90%, or 6694 
emails) and a testing set (10%, or about 744 emails). 

5.2 Natural Language Processing - Because human 
languages are made up of so many complex rules, it can be 
difficult to design a model that can analyze written or 
spoken language. To help solve this problem, natural 
language processing (NLP) can be used to simplify the text. 
This simplification can also help reduce the feature space, 
or number of individual variables, to be considered by any 
classification algorithms. In the case of text data, each 
unique word is a variable, so reducing the number of 
unique words in the data can make analysis much less 
complex. Several NLP techniques were used to process the 
text of the phishing and ham emails. These were also 



popular techniques used in existing work on phishing email 
detection (see [4], [5], [6]). 

Word tokenization [9] is a simple form of processing that 
makes the text easier to work with. Tokenization breaks 
down the text data into individual words or word parts. The 
rules dictating how the words are split will depend upon 
the algorithm used for tokenization. In this research, the 
algorithm breaks words apart using primarily whitespace. 
Apostrophes in the text are also used to separate common 
contractions from the “base” word. For instance, words like 
“couldn’t” become “could” and “n’t”. 

Stopwords are words that appear often in certain 
languages. In the english language, these words include 
“and”, “the”, “it”, etc. Because these words would appear 
so often in any email, regardless of its classification, these 
words were removed entirely [9]. This is another way to 
reduce the overall feature space of the data. In addition, 
word tokenization aids stopword removal.  Splitting words 
on apostrophes breaks the positive and negative forms of a 
word into similar pieces. As Figure 1 depicts, word 
tokenization before stopword removal actually makes the 
stopword list shorter and simpler. 

The same method for removing stopwords can also be used 
to remove punctuation [9]. Like the stopwords, the same 
punctuation would appear in an email whether it was a 
phishing or ham sample. Removing all punctuation reduces 
the feature space. 

Original String “test should shouldn’t would 
wouldn’t could couldn’t” 

Desired String “test” 

Stopword List 1 should, shouldn’t, would, 
wouldn’t, could, couldn’t 

(size = 6) 

String After 
Tokenization 

“test”, “should”, “should”, 
“n’t”, “would”, “would”, 

“n’t”, “could”, “could”, “n’t” 

Stopword List 2 should, would, could, n’t 
(size = 4) 

Figure 1 - Visualization of the benefit of word 
tokenization before stopword removal. The chart 
shows the stopword lists required to reduce the 

original string to the desired string without and with 
word tokenization. 

Stemming is also a popular method for reducing feature 
space [9]. The stemming algorithm selected for this work 
was the Porter Stemmer [10]. The algorithm was used to 
remove any suffixes from the words in the text data. This 
returned words in a similar tense. For example, “run”, 
“runner”, and “running” all became “run” when passed 
through the Porter stemmer. These three words were then 
considered the same word, and the number of unique word 

variables was reduced by two. It is important to note that 
this process does not negatively affect the text analysis of 
the email by making it more difficult to understand. It may 
be more difficult for human eyes to read, but to the model, 
the presence of the word in any tense should have the same 
effect on how the email is analyzed. It is also important to 
note that not all words become another proper word. For 
instance, “computer” becomes “comput” in the Porter 
stemmer, which is technically the root of the word. 
However, since all instances of “computer” are treated this 
way (along with words like “compute” and “computing”), 
this also does not negatively affect the analysis. 

5.3 Vectorization - The vectorization of the data is an 
important step because in general, classification models 
can only handle some kind of numerical data, not text data. 
Vectorization transforms a string of words into a numerical 
representation that can be analyzed. “Term Frequency-
Inverse Document Frequency” Vectorization, or TFIDF, 
was chosen for this purpose. This means that for each word 
in a document, or email, the number of times a word 
appeared in the email was compared to the number of times 
it appeared across the data as a whole. Use of this method 
relies on a single vocabulary to be used for all analysis. 

The training documents were first passed through a 
separate vectorizer in order to create a single usable 
vocabulary. The training documents were then vectorized 
using a TFIDF vectorizer with the vocabulary created by 
the first vectorizer. This same vocabulary was used to 
vectorize the test documents as well. This was done so that 
the training and testing vectors were comparable. 
Unfortunately, this means that any “new” words in the test 
documents were effectively ignored because the training 
documents do not contain those words. This highlights one 
benefit of having a large training set: it reduces the number 
of new, unseen words that the testing set could contain, 
simply by containing a wider variety of words in the 
training set. 

5.4 Classification Algorithms - Classification algorithms 
are used to build the classification model. The point of the 
classification model in this project is to be able to analyze 
similarities and differences between the vectorized 
phishing emails and the vectorized ham emails in the 
training set, and to build a model based on this analysis. 
The model can then be used to identify new emails in the 
testing set as either “Phishing” or “Ham”, which in this 
project, corresponds to model responses of “True” or 
“False” respectively. 

Logistic Regression is a classification algorithm that deals 
easily with binary classification, where there are only two 
categorical target values, such as true/false. The binary 
logistic statistical equation is used to determine the 
probability that a sample will fall into each possible 
category. It is classified based on the target value with the 
highest probability of being correct. 

Support vector machines work well when samples have 
many variables, which makes it a good choice for text 



classification. The specific type of support vector machine 
is a linear support vector classifier, or linear SVC. This 
algorithm will basically draw a linear boundary between 
the two target values based on the characteristics and 
corresponding target values of the training samples. A test 
sample is then classified by identifying where it falls in 
relation to this boundary. 

The random forest classifier is an ensemble method, which 
means multiple individual classifiers are used together in 
order to compound their classifying power. A random 
forest is a combination of multiple decision trees. A 
decision tree is a tree-like structure which partitions the 
training data using various tests, creating branches at each 
new test. The leaf nodes represent the final classification of 
each partition of samples. In a random forest classifier, 
multiple decision trees “vote” on the correct classification 
of each test sample. 

6. Results 
The preliminary results of our analysis can be seen in 
Figure 2. The numbers represent the percentage of test 
samples correctly classified by the three tested 
classification models. Each classification model was 
recreated and given test samples five times (five trials in 
Figure 2). The results of each individual trial is recorded, 
with the results of all five trials being averaged together for 
each model type. This is done because certain model 
algorithms create different models with each run. For 
instance, a Random Forest algorithm will create a different 
set of trees with each run, depending on how the algorithm 
divides the samples each time. To really gauge the 
accuracy of such a model, the model must be tested 
multiple times. However, for Logistic Regression and 
Linear SVC, the results remain consistent through each 
trial. This is not actually surprising, knowing the way these 
algorithms work. Logistic regression uses an unchanging 
statistical equation to perform classification. Linear SVC 
virtually graphs the characteristics of each sample to create 
its boundary. Since the models were trained on the same 
data each time, it is reasonable to assume that the resulting 
models did not vary from trial to trial. 

 Logistic 
Regression 

Linear SVC Random 
Forest 

Trial 1 92.06% 93.27% 92.19% 

Trial 2 92.06% 93.27% 92.60% 

Trial 3 92.06% 93.27% 92.33% 

Trial 4 92.06% 93.27% 92.19% 

Trial 5 92.06% 93.27% 92.19% 

Average 92.06% 93.27% 92.30% 

Figure 2 - Results table, before tuning. 

Logistic regression and random forest are achieving 
approximately 92% accuracy results, and linear svc is 
about 93% accurate on average. These initial results, using 
the default settings for the algorithms, are promising even 
though no parameter tuning has been done to mold the 
model algorithms to the problem at hand. Parameter tuning 
is an important step in the modelling process, and the 
concept is accepted as standard practice by those in the 
field [11]. Tuning occurs when the changeable parameters 
of a model are adjusted to their optimal values for the data 
set. It is not common for the optimal parameter settings for 
the models to be the default values. Of the models used in 
this research, the simplest to tune are the Logistic 
Regression and Linear Support Vector Machine models. 

For these two models, there is only one parameter that is 
usually tuned: C. In the linear support vector classifier, the 
parameter C represents how large of a margin should be 
around the hyperplane, or, how much misclassification of 
training samples should be avoided. Larger values of C 
mean smaller margins. Most of the other parameters for 
this model do not apply to the problem posed in this 
research. C has a similar purpose as a parameter in logistic 
regression models, except instead of “penalty”, the 
parameter is called “regularization strength”. In both cases, 
the C parameter helps to reduce the likelihood of 
overfitting, where the model is fit so closely to the training 
set, that it does not predict well when given something new 
in a test set. Also similarly to linear support vector 
classification, many of the other parameters in the logistic 
regression model do not apply to this type of problem. 

Tuning the random forest model is a bit more difficult and 
time-consuming, simply because there are so many 
available parameters to tune that affect not only the 
accuracy of the model, but also the amount of time that it 
takes to build the model. Adjustable parameters in this 
model include the number of trees in the final model, the 
number of features considered when looking for the best 
way to split the samples at a branch, the maximum depth at 
each tree, and the minimum number of samples required to 
split a node. Each of these parameters has an influence on 
how complex the end model is, and therefore how well it 
performs and how long it takes for the model to be built. 
This also makes parameter tuning more complex. 
Generally, in order to tune one parameter, a set of potential 
values for that parameter is created. Then, the model is 
rebuilt for each value in the set, and the best-performing 
model by some metric is reported. When multiple 
parameters are being tuned, the model is rebuilt for each 
combination of parameter values listed. This means that 
tuning three parameters using only three values each causes 
the model to be built 27 times. For a model like random 
forest, which is already more complex and time-consuming 
to build, tuning multiple parameters can take a very long 
time. Therefore, it is sometimes best to tune only one or 
two parameters at a time, and see which parameters or 
parameter combinations seem to have the most positive 
effect on the final results. After several rounds of 
attempting to tune four different parameters, tuning 



concluded with the realization that the model still 
performed best under its default parameter values, with the 
exception of one parameter. Increasing the number of trees 
produced by the model by about 50 trees improved 
accuracy without producing a very large increase in the 
amount of time taken to build the model. 

The tuning methods reported performed five-fold cross 
validation in the background in order to determine which 
parameters led to the best model performance with each 
trial. In five-fold cross validation, the training set is 
partitioned into five subsets. Then, a model is trained and 
tested ten times, with a different subset acting as the testing 
set each time. The sets of possible values for each model 
were manually adjusted after each trial, in an attempt to 
hone in on a small range of optimal values. That results for 
the tuned models are as follows in Figure 3. 

Overall, the models are performing at about 93% accuracy. 
The model tuning efforts had an effect on the results for the 
random forest and logistic regression models, but little to 
no effect on the linear support vector classifier. These 
results are nearly on-par with the results from much of the 
background research referenced in [4], [5], and [6]. 
However, these researchers included several additional 
measures for improving results (particularly in the natural 
language processing step) which this research does not yet 
include. While it is possible that past researchers saw 
similar results at this stage, and that the additional steps in 
language processing were done to close that final five 
percent gap (the most accurate models in [4], [5], and [6] 
performed at approximately 98% accuracy), it is still 
necessary to reflect on the current results and address any 
existing issues. Some additional steps have therefore been 
taken in order to validate the accuracy of the current results. 

The phishing parser was reexamined, as described in 
Section 5.1. Before parser adjustments were made, the 
models were performing at about 98% accuracy without 
any parameter tuning, which was very suspect. Once more 
phishing emails were cleanly parsed, these results dropped 

to about 92% without parameter tuning. This is a much 
more realistic result, although it still warrants some 
examination. However, the now-corrected issues with the 
parser did explain some other problems with the models. 
First of all, there were some unusual words appearing in 
the vocabulary for the models. Some of the words seemed 
to be more like what might be found in the header of an 
email, rather than the message. The vocabulary has since 
been cleaned up quite a bit with the adjustments to the 
parser. In addition, the issues helped explain the extremely 
positive results that the models were previously producing. 
The models work by analyzing the frequency with which 
certain words appear in the message of the email. If the 
“message” data for an email sample after parsing including 
not only the correct message text, but also the header data 
and message for the email that followed it, then one sample 
would actually contain the message data of two emails. It 
follows then that certain phishing-related keywords could 
appear with as much as twice the frequency in a single 
sample as they should. This would make the phishing 
classification of this email pretty obvious, thus skewing the 
results positively. 

The vocabulary of the vectorization models was also 
revisited. It is possible that a particular word would appear 
with high frequency in one type of email, but this word 
would not be removed by the stopword processing. For 
instance, “eBay” is not a common enough word in 
everyday conversation to appear in most stopword lists, 
and may not even be a significantly common word in 
phishing emails in general. But if a large proportion of the 
phishing emails in this data set were created to appear as if 
they came from eBay, then the model would have no 
trouble identifying an email as a phishing email if it 
contained the word “eBay” an unusually large number of 
times. This, however, does not make it an effective model. 
If the model were to be deployed as an email filter, it 
wouldn’t be quite so successful because it would have 
greater difficulty identifying phishing emails that did not 
contain “eBay” a disproportionately large number of times. 
In order to investigate the possibility that this phenomenon

 Logistic 
Regression 

Logistic 
Regression 
Value of C 

Linear SVC Linear SVC 
Value of C 

Random Forest Random Forest 
Value of 

n_estimators 

Trial 1 93.41% 1000 93.41% 1.00 93.00% 70 

Trial 2 93.41% 750 93.41% 1.00 93.14% 60 

Trial 3 93.41% 1250 93.41% 1.00 92.19% 50 

Trial 4 93.41% 750 93.41% 0.75 93.00% 60 

Trial 5 93.41% 750 93.41% 0.75 92.73% 70 

Average 93.41% - 93.41% - 92.81% - 

Figure 3 - Results table, after tuning. 



had occurred with this data, the training set was split into 
ham and phishing, and the vectorizer was run on each set 
separately to create a vocabulary specific to each type of 
email. The top one hundred words in the vocabularies were 
then examined for unusual stopwords to add to the 
stopword list. Words like “eBay” and “Paypal” were added 
to the stopword list for the reasons explained above, but 
this did not affect the model results. 

Creating these top vocabulary lists did offer an interesting 
way to compare the emails by sight. Looking at the lists of 
the top vocabularies for each type of email, it can be seen 
that some of the social engineering patterns mentioned in 
Section 2 are being reflected in this data set. Some of the 
top words in the ham email vocabulary included “work”, 
“people”, “wrote”, “state”, “world”, and even words as 
benign as “mailman”. It is easy to imagine how these words 
would appear often in workplace emails, or casual emails 
that may relate some information about politics or world 
news. The top words in the phish vocabulary include 
“account”, “bank”, “access”, “protect”, “update”, and 
“login”. These are certainly words that fall in line with the 
description of phishing emails in Sections 1 and 2. A 
phishing email will often have the user follow a link to 
update or verify account information, and will try to 
convey a sense of urgency or that that user’s account may 
be vulnerable. It is a positive sign to see that the top 
vocabulary results for each type of email do make sense on 
their respective lists. 

Cross validation was incorporated to determine whether 
the models would change significantly with a slightly 
different training set. Cross validation is a method 
generally used to tune model parameters, but it can also be 
used to further investigate the training set. For this 
research, 10-fold cross validation was used. Ideally, the 
model will give consistent results regardless of which 
subset is used for testing. Otherwise, it could indicate that 
a certain subset of the training set is skewing the final 
results. Inconsistency between the cross validation test 
results and the final test set prediction accuracy could also 
indicate that the model is being overfit to the test set. When 
10-fold cross validation was performed on this set, the 
results did vary a reasonable amount, but were overall 
consistent not only with the other folds, but also with the 
results for the predictions on the actual testing set. This 
could indicate that the positive results from the final 
classification model are actually accurate. 

Assuming that the results are accurate, one interesting 
trend is that errors tend to come from phishing emails being 
misclassified as ham emails (since a phishing identification 
is considered “positive”, such errors are called false 
negatives). In addition, the same test samples are 
consistently misclassified. This indicates that these 
particular emails may be especially well-crafted to 
resemble legitimate emails. Further analysis of these 
emails is warranted. 

 

7. Future Work 

The natural language processing section of this project is 
the most complex. It is here that the text data can be 
manipulated in order to improve results. For the projects 
referenced in Section 2, the natural language process 
involved part-of-speech tagging, searching for named 
entities, and some reduction of the feature space by 
identification of synonyms. None of these steps have yet 
been incorporated into this research. The natural language 
processing steps currently being used may also be 
improved. For instance, the stopword list can be adjusted, 
or alternative algorithms for stemming can be explored. 

Much of the previous research done on this subject has 
included analyzing data about the link(s) included in the 
emails. This is not something that has yet been addressed 
in this research, but will likely be incorporated in the 
future. Whether phishing emails are misclassified as ham 
or vice versa, it could be helpful to analyze the link in the 
email, or to see whether the email contains an outside link 
at all. If there is no link, this is likely not a phishing email. 
There are also certain characteristics that tend to indicate 
that a link is illegitimate. For example, the data set created 
by Muhammad, McCluskey, and Thabtah [12] for the 
purpose of analyzing phishing websites specifies several 
key features that tend to characterize phishing websites. By 
combining the results of an analysis of the text along with 
analysis of features of any included links, more effective 
filters and educational tools could be developed. 

Future work may also include some analysis to determine 
the most common features of a phishing email. In addition 
to being able to detect phishing emails using the 
classification models, another part of the original project 
goal is to gain some insight on what makes a believable 
phishing email. The specific social engineering methods 
utilized present in this data set may be further investigated, 
along with the vocabulary lists from both types of email. 
Additional analysis of this kind could provide unique 
insights into the methods most popularly utilized by 
phishing attackers, and could lead to improvements in 
phishing educational tools. 

8. Conclusion 
This paper presents preliminary results that indicate that 
machine learning techniques can be effectively utilized to 
build a classifier that distinguishes phishing emails from 
non-phishing emails based on the text content. Several 
machine learning techniques have been applied to a corpus 
of emails with fairly consistent and promising results. The 
future phases of this project will include the incorporation 
of analysis of links contained within the emails, 
improvements to the text processing steps of the data 
analysis, and evaluation of the social engineering methods 
being utilized in the phishing attacks in the corpus. 
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