
USING MACHINE LEARNING TO IDENTIFY PHISHING ATTACKS

Jamie Thorpe, Stephanie Schwartz
Millersville University

jethorpe@millersville.edu, stephanie.schwartz@millersville.edu

Abstract
The term “phishing” refers to a type of cyber attack in
which the attacker sends fraudulent emails. What makes
this email attack unique is that it often requests that the user
follow an included link, where the user is asked to enter
private information. This project explores the possibility of
using natural language processing and machine learning
techniques to differentiate between legitimate and phishing
emails. Natural language processing tools used here
include word tokenization, stemming, and stopword
removal. These processes are used to prepare the emails for
analysis by machine learning models by manipulating the
text of the emails. Machine learning models look at
samples of both types of email, attempt to decide the
identifying factors of the two types of emails, and then
classify unseen samples. A strong model will be able to
identify a phishing email by analyzing the text of the email
in addition to the characteristics of the included link.

Keywords
phishing, machine learning, natural language processing

1. Introduction

Those who work to develop computer security measures
are faced with the issue of creating a secure but usable
system. There is no way to make a device 100% secure
without making it unusable. One reason for this is that the
user is actually a danger to the integrity of the system. In
recent years, a method of attack called “phishing” has
become more and more popular, and it relies primarily on
human error and lack of awareness.
“Phishing” refers to the use of social engineering to obtain
personal information from system users [1]. One of the
most popular forms of phishing attack is through email. A
“phishing email” is received by a system user, and if that
user is not trained to look out for phishing attacks, they may
believe the email to be legitimate. The social engineering
aspect of phishing involves crafting the language and
visual design of phishing emails and websites to make
them seem legitimate and to compel the user to submit
personal information. If a user receives a phishing email, it
likely appears to be from a legitimate source and asks the
user to follow a link, which takes the user to a phishing
website. Between the email and the site, the user is made
to believe that there is some (usually urgent) reason to
submit personal information, such as login credentials. The

attacker can then use this information to perform future
attacks. They now have access to the system, but can use
the system while appearing as a legitimate user, thus
avoiding detection by the computer’s intrusion detection
system [2].
Because this kind of attack relies so heavily on social
engineering, it can be very difficult to prevent. Phishing
emails may be caught by spam filters, but this is certainly
not always the case. Even if the email is caught by a spam
filter, there is no guarantee that the user won’t open it
anyway. The best way to prevent an attack it through
focused filtering for phishing, and through education for
users. Phishing can be particularly dangerous for larger
businesses, where more system users means more ways for
attackers to access login information. According to the
Anti-Phishing Working Group, there were 364,424
phishing websites detected from July to September of
2016, which was actually a 25% decrease from the
previous quarter, where they recorded record highs [2]. The
number of unique reports of phishing attacks during this
time frame also dipped, from 315,524 reports worldwide in
the second quarter of this year to 229,251 in the third [2].
Regardless of the decline, hundreds of thousands of attacks
in just a few months is still indicative of a major security
concern.
The goal of this project is to utilize machine learning and
natural language processing techniques in order to develop
a classifier to differentiate between phishing and non-
phishing emails. The purpose of such a classifier is two-
fold: 1) it could be used as part of a tool to filter email, 2)
useful information can be gleaned from the attributes used
by the classifier and this information can be used to better
educate users on how to avoid becoming victims of
phishing.

2. Background
Social engineering plays a big role in the success of
phishing attacks. In order to provide a better idea of what
to look for during text analysis, one must consider the
social engineering aspect of the attack. According to
Webroot, a computer security services provider, social
engineering is an “art”, and involves “manipulating people
so they give up confidential information” [3]. The aim is
generally to obtain bank information or the passwords
necessary to access the user’s personal or professional
computer. In order to convince the user to give up this
information, a phishing email may include a request to
verify information, a notification stating that the user has
won something, or a message asking for help [3]. In any
case, the goal of the email is exploitation of the user’s trust

mailto:jethorpe@millersville.edu
mailto:stephanie.schwartz@millersville.edu
mailto:stephanie.schwartz@millersville.edu

and curiosity. These trends were important to keep in mind
during this research when attempting to distinguish
between phishing and legitimate emails. For instance, the
phishing email text often contained certain keywords such
as “verify” or “bank”.

One of the major problems with text analysis is high
dimensionality of the feature space. High dimensionality
occurs when there are a large number of variables to
consider, which can make analysis more complex. In text
analysis, each unique word is an individual variable, so this
problem is particularly relevant. Verma and Hossain [4]
handled this problem by defining the feature space further
using SenseLearner and WordNet together. SenseLearner
helps to differentiate the contexts of a word that may have
multiple meanings. WordNet can then be used to find a set
of synonyms for the word, so that the presence of
synonyms between two emails can be detected [4]. These
steps reduced the number of individual word variables to
consider by equating sets of words as synonyms.
Verma and Hossain [4] also incorporated a certain amount
of Natural Language Processing (NLP) into their work.
Performing NLP on a text dataset is a challenging task, but
it is necessary in order to help break down the text into
something that can be analyzed. It can also be used to
further reduce the feature space. The authors used NLP
techniques to break the text of each email into individual
words; tag parts of speech; recognize named organizations,
people and locations; normalize words to lowercase;
remove stopwords; and reduce words to their bases through
a process called “stemming” [4]. Further research of
similar projects shows that this is a fairly standard set of
techniques for processing text. Verma worked on a similar
project involving phishing email text [5] in which the same
NLP was performed.
Another interesting product of [4] was the development of
an “Action Detector” and a “Nonsensical Detector”. For
classification purposes, the authors utilized pattern
matching with these two sub-classifiers. They observed
that the phishing emails often focused on some action to be
performed by the email recipient, and that phishing emails
not caught by this detector are often missed because the
text is irrelevant to the subject, thus “nonsensical”. If an
email falls into one of these categories, it can be marked by
the sub-classifiers as more likely to be phishing.

Similarly, [5] introduced the idea of “actionable” vs
“informational” emails. Similar to the observations made
in [4] which led to an “action detector”, the authors of [5]
looked at the language in the email text to determine
whether it is trying to convey a sense of urgency, threat, or
concern, or is offering some incentive to performing an
action. Because social engineering in phishing emails often
uses some kind of story or scenario to convince the user to
perform an action [3], this kind of language is more
indicative of a phishing email. On the other hand, non-
phishing emails tend to be more informative and simple, or
less story-based. The difference in language here

contributes to the end algorithm.
The analysis done by Basnet, Mukkamala, and Sung in [6]
introduces a different approach to the phishing problem. As
mentioned above, the authors’ work is based on various
features of the websites linked in the phishing emails. Most
of the values for the features are binary, and indicate the
presence or absence of a certain quality. This data analysis
does not require NLP, and is thus much less complex and
time-consuming than research involving the actual email
text. However, when creating a filter for phishing emails,
using the data from the websites linked may not be the
safest method to pursue, as it bring the user “closer” to the
attacker.
Another major difference between [6] and the other works
mentioned here is the use of both supervised and
unsupervised algorithms for classification. In supervised
classification, a model is trained using a set of sample data,
where each sample is associated with a “target” value. This
target value is the correct identification for the sample. In
unsupervised classification, the sample data is fed to the
model without target values. The model then creates
groupings in the data without knowledge of the correct
identification. Basnet, etc. were studying phishing websites
specifically, and their work shows the possibility of a
successful classifier when using an unsupervised clustering
method. However, the biggest success was with Support
Vector Machines, which are supervised methods.

3. Approach
Most of the previous work on this subject focused on
creating a phishing email filter. Some researchers used the
email text, others used metadata from the link in the text.
This paper focuses on the text analysis, with the analysis of
link data designated as future work.

A data set of legitimate emails was used alongside the
phishing set, in order to compare characteristics of the two
different types of emails. A classification model was built
for this purpose, with the goal of understanding more about
what makes phishing attacks successful. This involved
looking at the characteristics that phishing emails tend to
have, and determining whether anything can be learned
about effective types of social engineering. Finally, most
of the researchers mentioned above used statistical analysis
as part of their processes alongside common machine
learning algorithms. Some statistical-based methods may
be used in future work, but the primary focus of this work
thus far has been on the machine learning algorithms.

4. Data
The type of analysis performed compares the
characteristics of a phishing email to the characteristics of
a “regular” email. These non-phishing emails will be
referred to as “ham” emails going forward, a term that is
used in the dataset to represent non-spam emails. For this
application, the features of large sets of both phishing and
ham emails were examined, particularly the text of each

email. This text data included the email sender, subject
line, links, and, most importantly, the content of the email.
Once this data was pulled from the email, some natural
language processing techniques were used to further
manipulate the text data and prepare it for machine learning
analysis.
The phishing emails come from the online Phishing Corpus
[7]. The corpus was created from spam emails received
over several years’ time by the corpus author. There are a
wide range of emails included in the corpus. It contains a
total of 4,550 emails, split into four files that each represent
a different span of time during which the author collected
the phishing emails. This is one of the few publicly
available corpuses of only phishing emails, and many of
the papers written about phishing emails since the corpus
was published have used this same corpus, including [4],
[5], and [6]. It is important to keep in mind that these are
emails targeted toward an individual, which may be
formatted differently than those sent throughout a company
or aimed at gaining access to a larger organization. As
such, it was important for the sake of consistency to keep
the intended audience of the original email in mind when
selecting a ham corpus.
The ham emails come from the SpamAssassin public mail
corpus [8]. This corpus was built to compare spam emails
to non-spam, or “ham”, emails. Only the ham emails will
be used, so there are no spam or phishing objects mixed in
with the ham set. The data set includes 3,900 “easy” ham
emails, which are easy to differentiate from spam. It also
contains an additional 250 “hard” ham emails, which are
more difficult to differentiate. This is a total of 4,150 ham
emails, and each are viewed as individual text files. Since
the difficulty of filtering different types of emails is not
being studied, it is not necessary to keep the sets separated.
However, it is beneficial that this set provides a wide range
of email samples. This corpus was selected because the
emails are not exclusively ones that were originally sent
within a particular company, which is the case with some
other ham corpuses. In this way, we can be sure that the
original phishing and ham emails had similar intended
audiences, and that our final results will not be skewed by
dissimilar data in this way.
For machine learning classification, it is important to build
models using approximately the same number of objects
for each class. The phishing set had about 400 more emails
than the ham set, but a difference of only 400 emails isn’t
significant considering the size of the datasets overall.
However, at the end of the parsing stage, the size of the
dataset was reevaluated to determine whether the sets were
still balanced. Another factor to consider is the time and
size burden of the dataset. Text data takes much longer to
process than numerical data. Having to handle nearly 9,000
email samples may be out of the question for certain
applications simply because of how long it takes for the
text to be processed and quantified in preparation for the
machine learning process.

5. Methods
5.1 Parsing - Before the emails can be analyzed, the
relevant information was parsed from the email files. The
data extracted from the emails included the sender, subject,
included links, and the email text. The sender, subject, and
links, or references, could be gathered from the headers of
each email. The email text was the last part of each email,
although the emails were recorded differently in the ham
and phishing corpuses.

The ham emails were in individual text files. Parsing the
email involved looking for keywords on each line of the
header to find the pertinent information and then, once the
message started, reading to the end of the text file. Since
the message is the last component to appear in the file, the
end of the file is also the end of the message content.

The phishing emails were slightly more complicated. Each
phishing file contained not one, but hundreds if not
thousands of emails. The headers could be read similarly
to the ham headers, but the email text contained some
HTML. The BeautifulSoup package in Python was used to
extract the important text data from the HTML. Again, the
message was the last component of the email listed in the
file before continuing to the next email’s header. So, once
the end of the HTML had been reached, this also signified
the end of the email.

During the original parsing process for the phishing emails,
it seemed as though about 3,300 emails were being ignored
because they were not parsing cleanly. This still left
enough samples to do some preliminary analysis, but it left
a big gap in the dataset. Upon further inspection, it was
discovered that the phishing parser was not always
correctly identifying the end of each email. So, it was
collecting as the “message” part of one the correct
message, the header of the next email, and the message of
the next email. After adjustments were made to the parser,
about 3,700 could be cleanly parsed, and the parser could
more easily detect the end of an email sample. Because of
this, the dataset is not only larger, it is more accurate.

In total, 3859 ham emails and 3719 phish emails were
successfully parsed. From these, 3719 ham emails were
used so that the phishing and ham samples were balanced.
This set was then split into a training set (90%, or 6694
emails) and a testing set (10%, or about 744 emails).

5.2 Natural Language Processing - Because human
languages are made up of so many complex rules, it can be
difficult to design a model that can analyze written or
spoken language. To help solve this problem, natural
language processing (NLP) can be used to simplify the text.
This simplification can also help reduce the feature space,
or number of individual variables, to be considered by any
classification algorithms. In the case of text data, each
unique word is a variable, so reducing the number of
unique words in the data can make analysis much less
complex. Several NLP techniques were used to process the
text of the phishing and ham emails. These were also

popular techniques used in existing work on phishing email
detection (see [4], [5], [6]).

Word tokenization [9] is a simple form of processing that
makes the text easier to work with. Tokenization breaks
down the text data into individual words or word parts. The
rules dictating how the words are split will depend upon
the algorithm used for tokenization. In this research, the
algorithm breaks words apart using primarily whitespace.
Apostrophes in the text are also used to separate common
contractions from the “base” word. For instance, words like
“couldn’t” become “could” and “n’t”.

Stopwords are words that appear often in certain
languages. In the english language, these words include
“and”, “the”, “it”, etc. Because these words would appear
so often in any email, regardless of its classification, these
words were removed entirely [9]. This is another way to
reduce the overall feature space of the data. In addition,
word tokenization aids stopword removal. Splitting words
on apostrophes breaks the positive and negative forms of a
word into similar pieces. As Figure 1 depicts, word
tokenization before stopword removal actually makes the
stopword list shorter and simpler.

The same method for removing stopwords can also be used
to remove punctuation [9]. Like the stopwords, the same
punctuation would appear in an email whether it was a
phishing or ham sample. Removing all punctuation reduces
the feature space.

Original String “test should shouldn’t would
wouldn’t could couldn’t”

Desired String “test”

Stopword List 1 should, shouldn’t, would,
wouldn’t, could, couldn’t

(size = 6)

String After
Tokenization

“test”, “should”, “should”,
“n’t”, “would”, “would”,

“n’t”, “could”, “could”, “n’t”

Stopword List 2 should, would, could, n’t
(size = 4)

Figure 1 - Visualization of the benefit of word
tokenization before stopword removal. The chart
shows the stopword lists required to reduce the

original string to the desired string without and with
word tokenization.

Stemming is also a popular method for reducing feature
space [9]. The stemming algorithm selected for this work
was the Porter Stemmer [10]. The algorithm was used to
remove any suffixes from the words in the text data. This
returned words in a similar tense. For example, “run”,
“runner”, and “running” all became “run” when passed
through the Porter stemmer. These three words were then
considered the same word, and the number of unique word

variables was reduced by two. It is important to note that
this process does not negatively affect the text analysis of
the email by making it more difficult to understand. It may
be more difficult for human eyes to read, but to the model,
the presence of the word in any tense should have the same
effect on how the email is analyzed. It is also important to
note that not all words become another proper word. For
instance, “computer” becomes “comput” in the Porter
stemmer, which is technically the root of the word.
However, since all instances of “computer” are treated this
way (along with words like “compute” and “computing”),
this also does not negatively affect the analysis.

5.3 Vectorization - The vectorization of the data is an
important step because in general, classification models
can only handle some kind of numerical data, not text data.
Vectorization transforms a string of words into a numerical
representation that can be analyzed. “Term Frequency-
Inverse Document Frequency” Vectorization, or TFIDF,
was chosen for this purpose. This means that for each word
in a document, or email, the number of times a word
appeared in the email was compared to the number of times
it appeared across the data as a whole. Use of this method
relies on a single vocabulary to be used for all analysis.

The training documents were first passed through a
separate vectorizer in order to create a single usable
vocabulary. The training documents were then vectorized
using a TFIDF vectorizer with the vocabulary created by
the first vectorizer. This same vocabulary was used to
vectorize the test documents as well. This was done so that
the training and testing vectors were comparable.
Unfortunately, this means that any “new” words in the test
documents were effectively ignored because the training
documents do not contain those words. This highlights one
benefit of having a large training set: it reduces the number
of new, unseen words that the testing set could contain,
simply by containing a wider variety of words in the
training set.

5.4 Classification Algorithms - Classification algorithms
are used to build the classification model. The point of the
classification model in this project is to be able to analyze
similarities and differences between the vectorized
phishing emails and the vectorized ham emails in the
training set, and to build a model based on this analysis.
The model can then be used to identify new emails in the
testing set as either “Phishing” or “Ham”, which in this
project, corresponds to model responses of “True” or
“False” respectively.

Logistic Regression is a classification algorithm that deals
easily with binary classification, where there are only two
categorical target values, such as true/false. The binary
logistic statistical equation is used to determine the
probability that a sample will fall into each possible
category. It is classified based on the target value with the
highest probability of being correct.

Support vector machines work well when samples have
many variables, which makes it a good choice for text

classification. The specific type of support vector machine
is a linear support vector classifier, or linear SVC. This
algorithm will basically draw a linear boundary between
the two target values based on the characteristics and
corresponding target values of the training samples. A test
sample is then classified by identifying where it falls in
relation to this boundary.

The random forest classifier is an ensemble method, which
means multiple individual classifiers are used together in
order to compound their classifying power. A random
forest is a combination of multiple decision trees. A
decision tree is a tree-like structure which partitions the
training data using various tests, creating branches at each
new test. The leaf nodes represent the final classification of
each partition of samples. In a random forest classifier,
multiple decision trees “vote” on the correct classification
of each test sample.

6. Results
The preliminary results of our analysis can be seen in
Figure 2. The numbers represent the percentage of test
samples correctly classified by the three tested
classification models. Each classification model was
recreated and given test samples five times (five trials in
Figure 2). The results of each individual trial is recorded,
with the results of all five trials being averaged together for
each model type. This is done because certain model
algorithms create different models with each run. For
instance, a Random Forest algorithm will create a different
set of trees with each run, depending on how the algorithm
divides the samples each time. To really gauge the
accuracy of such a model, the model must be tested
multiple times. However, for Logistic Regression and
Linear SVC, the results remain consistent through each
trial. This is not actually surprising, knowing the way these
algorithms work. Logistic regression uses an unchanging
statistical equation to perform classification. Linear SVC
virtually graphs the characteristics of each sample to create
its boundary. Since the models were trained on the same
data each time, it is reasonable to assume that the resulting
models did not vary from trial to trial.

 Logistic
Regression

Linear SVC Random
Forest

Trial 1 92.06% 93.27% 92.19%

Trial 2 92.06% 93.27% 92.60%

Trial 3 92.06% 93.27% 92.33%

Trial 4 92.06% 93.27% 92.19%

Trial 5 92.06% 93.27% 92.19%

Average 92.06% 93.27% 92.30%

Figure 2 - Results table, before tuning.

Logistic regression and random forest are achieving
approximately 92% accuracy results, and linear svc is
about 93% accurate on average. These initial results, using
the default settings for the algorithms, are promising even
though no parameter tuning has been done to mold the
model algorithms to the problem at hand. Parameter tuning
is an important step in the modelling process, and the
concept is accepted as standard practice by those in the
field [11]. Tuning occurs when the changeable parameters
of a model are adjusted to their optimal values for the data
set. It is not common for the optimal parameter settings for
the models to be the default values. Of the models used in
this research, the simplest to tune are the Logistic
Regression and Linear Support Vector Machine models.

For these two models, there is only one parameter that is
usually tuned: C. In the linear support vector classifier, the
parameter C represents how large of a margin should be
around the hyperplane, or, how much misclassification of
training samples should be avoided. Larger values of C
mean smaller margins. Most of the other parameters for
this model do not apply to the problem posed in this
research. C has a similar purpose as a parameter in logistic
regression models, except instead of “penalty”, the
parameter is called “regularization strength”. In both cases,
the C parameter helps to reduce the likelihood of
overfitting, where the model is fit so closely to the training
set, that it does not predict well when given something new
in a test set. Also similarly to linear support vector
classification, many of the other parameters in the logistic
regression model do not apply to this type of problem.

Tuning the random forest model is a bit more difficult and
time-consuming, simply because there are so many
available parameters to tune that affect not only the
accuracy of the model, but also the amount of time that it
takes to build the model. Adjustable parameters in this
model include the number of trees in the final model, the
number of features considered when looking for the best
way to split the samples at a branch, the maximum depth at
each tree, and the minimum number of samples required to
split a node. Each of these parameters has an influence on
how complex the end model is, and therefore how well it
performs and how long it takes for the model to be built.
This also makes parameter tuning more complex.
Generally, in order to tune one parameter, a set of potential
values for that parameter is created. Then, the model is
rebuilt for each value in the set, and the best-performing
model by some metric is reported. When multiple
parameters are being tuned, the model is rebuilt for each
combination of parameter values listed. This means that
tuning three parameters using only three values each causes
the model to be built 27 times. For a model like random
forest, which is already more complex and time-consuming
to build, tuning multiple parameters can take a very long
time. Therefore, it is sometimes best to tune only one or
two parameters at a time, and see which parameters or
parameter combinations seem to have the most positive
effect on the final results. After several rounds of
attempting to tune four different parameters, tuning

concluded with the realization that the model still
performed best under its default parameter values, with the
exception of one parameter. Increasing the number of trees
produced by the model by about 50 trees improved
accuracy without producing a very large increase in the
amount of time taken to build the model.

The tuning methods reported performed five-fold cross
validation in the background in order to determine which
parameters led to the best model performance with each
trial. In five-fold cross validation, the training set is
partitioned into five subsets. Then, a model is trained and
tested ten times, with a different subset acting as the testing
set each time. The sets of possible values for each model
were manually adjusted after each trial, in an attempt to
hone in on a small range of optimal values. That results for
the tuned models are as follows in Figure 3.

Overall, the models are performing at about 93% accuracy.
The model tuning efforts had an effect on the results for the
random forest and logistic regression models, but little to
no effect on the linear support vector classifier. These
results are nearly on-par with the results from much of the
background research referenced in [4], [5], and [6].
However, these researchers included several additional
measures for improving results (particularly in the natural
language processing step) which this research does not yet
include. While it is possible that past researchers saw
similar results at this stage, and that the additional steps in
language processing were done to close that final five
percent gap (the most accurate models in [4], [5], and [6]
performed at approximately 98% accuracy), it is still
necessary to reflect on the current results and address any
existing issues. Some additional steps have therefore been
taken in order to validate the accuracy of the current results.

The phishing parser was reexamined, as described in
Section 5.1. Before parser adjustments were made, the
models were performing at about 98% accuracy without
any parameter tuning, which was very suspect. Once more
phishing emails were cleanly parsed, these results dropped

to about 92% without parameter tuning. This is a much
more realistic result, although it still warrants some
examination. However, the now-corrected issues with the
parser did explain some other problems with the models.
First of all, there were some unusual words appearing in
the vocabulary for the models. Some of the words seemed
to be more like what might be found in the header of an
email, rather than the message. The vocabulary has since
been cleaned up quite a bit with the adjustments to the
parser. In addition, the issues helped explain the extremely
positive results that the models were previously producing.
The models work by analyzing the frequency with which
certain words appear in the message of the email. If the
“message” data for an email sample after parsing including
not only the correct message text, but also the header data
and message for the email that followed it, then one sample
would actually contain the message data of two emails. It
follows then that certain phishing-related keywords could
appear with as much as twice the frequency in a single
sample as they should. This would make the phishing
classification of this email pretty obvious, thus skewing the
results positively.

The vocabulary of the vectorization models was also
revisited. It is possible that a particular word would appear
with high frequency in one type of email, but this word
would not be removed by the stopword processing. For
instance, “eBay” is not a common enough word in
everyday conversation to appear in most stopword lists,
and may not even be a significantly common word in
phishing emails in general. But if a large proportion of the
phishing emails in this data set were created to appear as if
they came from eBay, then the model would have no
trouble identifying an email as a phishing email if it
contained the word “eBay” an unusually large number of
times. This, however, does not make it an effective model.
If the model were to be deployed as an email filter, it
wouldn’t be quite so successful because it would have
greater difficulty identifying phishing emails that did not
contain “eBay” a disproportionately large number of times.
In order to investigate the possibility that this phenomenon

 Logistic
Regression

Logistic
Regression
Value of C

Linear SVC Linear SVC
Value of C

Random Forest Random Forest
Value of

n_estimators

Trial 1 93.41% 1000 93.41% 1.00 93.00% 70

Trial 2 93.41% 750 93.41% 1.00 93.14% 60

Trial 3 93.41% 1250 93.41% 1.00 92.19% 50

Trial 4 93.41% 750 93.41% 0.75 93.00% 60

Trial 5 93.41% 750 93.41% 0.75 92.73% 70

Average 93.41% - 93.41% - 92.81% -

Figure 3 - Results table, after tuning.

had occurred with this data, the training set was split into
ham and phishing, and the vectorizer was run on each set
separately to create a vocabulary specific to each type of
email. The top one hundred words in the vocabularies were
then examined for unusual stopwords to add to the
stopword list. Words like “eBay” and “Paypal” were added
to the stopword list for the reasons explained above, but
this did not affect the model results.

Creating these top vocabulary lists did offer an interesting
way to compare the emails by sight. Looking at the lists of
the top vocabularies for each type of email, it can be seen
that some of the social engineering patterns mentioned in
Section 2 are being reflected in this data set. Some of the
top words in the ham email vocabulary included “work”,
“people”, “wrote”, “state”, “world”, and even words as
benign as “mailman”. It is easy to imagine how these words
would appear often in workplace emails, or casual emails
that may relate some information about politics or world
news. The top words in the phish vocabulary include
“account”, “bank”, “access”, “protect”, “update”, and
“login”. These are certainly words that fall in line with the
description of phishing emails in Sections 1 and 2. A
phishing email will often have the user follow a link to
update or verify account information, and will try to
convey a sense of urgency or that that user’s account may
be vulnerable. It is a positive sign to see that the top
vocabulary results for each type of email do make sense on
their respective lists.

Cross validation was incorporated to determine whether
the models would change significantly with a slightly
different training set. Cross validation is a method
generally used to tune model parameters, but it can also be
used to further investigate the training set. For this
research, 10-fold cross validation was used. Ideally, the
model will give consistent results regardless of which
subset is used for testing. Otherwise, it could indicate that
a certain subset of the training set is skewing the final
results. Inconsistency between the cross validation test
results and the final test set prediction accuracy could also
indicate that the model is being overfit to the test set. When
10-fold cross validation was performed on this set, the
results did vary a reasonable amount, but were overall
consistent not only with the other folds, but also with the
results for the predictions on the actual testing set. This
could indicate that the positive results from the final
classification model are actually accurate.

Assuming that the results are accurate, one interesting
trend is that errors tend to come from phishing emails being
misclassified as ham emails (since a phishing identification
is considered “positive”, such errors are called false
negatives). In addition, the same test samples are
consistently misclassified. This indicates that these
particular emails may be especially well-crafted to
resemble legitimate emails. Further analysis of these
emails is warranted.

7. Future Work

The natural language processing section of this project is
the most complex. It is here that the text data can be
manipulated in order to improve results. For the projects
referenced in Section 2, the natural language process
involved part-of-speech tagging, searching for named
entities, and some reduction of the feature space by
identification of synonyms. None of these steps have yet
been incorporated into this research. The natural language
processing steps currently being used may also be
improved. For instance, the stopword list can be adjusted,
or alternative algorithms for stemming can be explored.

Much of the previous research done on this subject has
included analyzing data about the link(s) included in the
emails. This is not something that has yet been addressed
in this research, but will likely be incorporated in the
future. Whether phishing emails are misclassified as ham
or vice versa, it could be helpful to analyze the link in the
email, or to see whether the email contains an outside link
at all. If there is no link, this is likely not a phishing email.
There are also certain characteristics that tend to indicate
that a link is illegitimate. For example, the data set created
by Muhammad, McCluskey, and Thabtah [12] for the
purpose of analyzing phishing websites specifies several
key features that tend to characterize phishing websites. By
combining the results of an analysis of the text along with
analysis of features of any included links, more effective
filters and educational tools could be developed.

Future work may also include some analysis to determine
the most common features of a phishing email. In addition
to being able to detect phishing emails using the
classification models, another part of the original project
goal is to gain some insight on what makes a believable
phishing email. The specific social engineering methods
utilized present in this data set may be further investigated,
along with the vocabulary lists from both types of email.
Additional analysis of this kind could provide unique
insights into the methods most popularly utilized by
phishing attackers, and could lead to improvements in
phishing educational tools.

8. Conclusion
This paper presents preliminary results that indicate that
machine learning techniques can be effectively utilized to
build a classifier that distinguishes phishing emails from
non-phishing emails based on the text content. Several
machine learning techniques have been applied to a corpus
of emails with fairly consistent and promising results. The
future phases of this project will include the incorporation
of analysis of links contained within the emails,
improvements to the text processing steps of the data
analysis, and evaluation of the social engineering methods
being utilized in the phishing attacks in the corpus.

References:
[1] United States Computer Emergency Readiness Team,
Incident Reporting System, Official Website of the
Department of Homeland Security, https://www.us-
cert.gov/report-phishing

[2] Anti-Phishing Working Group, Phishing Activity
Trends Report, Quarter 3, 2016.

[3] L. Criddle, What Is Social Engineering?, Webroot,
https://www.webroot.com/us/en/home/resources/tips/onli
ne-shopping-banking/secure-what-is-social-engineering

[4] R. Verma, N. Hossain, Semantic Feature Selection for
Text with Application to Phishing Email Detection, 16th.
Annual International Conference on Information Security
and Cryptology, Seoul, Korea, 2013.

[5] R. Verma, N. Shashidhar, N. Hossain, Detecting
Phishing Emails the Natural Language Way, Computer
Security–ESORICS, Pisa, Italy, 2012, 824-841.

[6] R. Basnet, S. Mukkamala, A. Sung, Detection of
Phishing Attacks: A Machine Learning Approach, Studies
in Fuzziness and Soft Computing, 226, 2008, 373–383.

[7] J. Nazario, The online phishing corpus, 2004,
http://monkey.org/~jose/wiki/doku.php

[8] Apache SpamAssassin, The public mail corpus, 2006,
https://spamassassin.apache.org/publiccorpus/

[9] D. Jurafsky, J. Martin, Speech and language
processing, 2nd Edition (Upper Saddle River, NJ: Pearson
- Prentice Hall, 2009).

[10] C.J. van Rijsbergen, S.E. Robertson, M.F. Porter, New
models in probabilistic information retrieval, British
Library Research and Development Report, no. 5587,
1980.

[11] F. Hutter, H. Hoos, K. Leyton-Brown, Sequential
model-based optimization for general algorithm
configuration, 5th International Conference on Learning
and Intelligent Optimization, Rome, Italy, 2011, 507-523.

[12] R. Mohammad, L. McCluskey, F. Thabtah, Phishing
Websites Data Set, UCI Machine Learning Repository,
2015,
https://archive.ics.uci.edu/ml/datasets/Phishing+Websites

https://www.us-cert.gov/report-phishing
https://www.us-cert.gov/report-phishing
https://www.webroot.com/us/en/home/resources/tips/online-shopping-banking/secure-what-is-social-engineering
https://www.webroot.com/us/en/home/resources/tips/online-shopping-banking/secure-what-is-social-engineering
https://spamassassin.apache.org/publiccorpus/
https://archive.ics.uci.edu/ml/datasets/Phishing+Websites

