CSCI 340: Computational Models

R

Turing Machines

Chapter 19 Department of Computer Science

The Turing Machine

Regular Expressions

Acceptor:FA, TGNondeterminism equal?YesClosed Under: $L_1 + L_2$ L_1L_2 L^* $L' - L_2$ Decidability:Equivalence, emptiness, finiteness, membershipExamples:Text editors, Seq. Circuits

Context-Free Grammars

Acceptor:PDANondeterminism equal?NoClosed Under: $L_1 + L_2 \ L_1 L_2 \ L^*$ Decidability:Emptiness, finiteness, membershipExamples:Programming Language Statements, Compilers

The Turing Machine

Regular Expressions

Acceptor: FA, TG

Nondeterminism equal? Yes

Closed Under: $L_1 + L_2 \quad L_1L_2 \quad L^* \quad L' \quad L_1 \cap L_2$

Decidability: Equivalence, emptiness, finiteness, membership Examples: Text editors, Seq. Circuits

Context-Free Grammars

Acceptor:PDANondeterminism equal?NoClosed Under: $L_1 + L_2 \ L_1 L_2 \ L^*$ Decidability:Emptiness, finiteness, membershipExamples:Programming Language Statements, Compilers

• Type 0 Grammars

Acceptor:Turing machine, Post machine, 2PDA, nPDANondeterminism equal?YesClosed Under: $L_1 + L_2 \ L_1L_2 \ L^* \ L_1 \cap L_2$ Decidability:Not a whole lotExamples:Computers

- We can finally represent and model a computer!
- But when were all of these invented?
- 1950s: Regular Languages, FAs by Kleene, Mealy, Moore, Rabin, Scott
- 1960s: CFGs and PDAs by Chomsky, Oettinger, Schützenberger, Evey
- 1930s: Turing machines and Theory by Turing and Post

Turing Machines

Definition

- A **Turing Machine**, denoted TM, is a collection of six things:
 - \blacksquare An alphabet Σ of input letters which does not contain the blank symbol Δ
 - A TAPE divided into numbers cells, each containing a character or a blank
 - A TAPE-HEAD that can in one step *READ* the contents of a cell, *WRITE* a different character to a cell, and/or *MOVE* left/right one cell. *It cannot move "left" of the beginning of the tape.*
 - An alphabet Γ of characters that can be written to the TAPE by the TAPE-HEAD. Γ can include Σ. The TAPE-HEAD can also print Δ but this is called *erasing*

Turing Machines

Definition

- A finite set of states including exactly one START state and (maybe) some HALT states that cause execution to terminate.
- **6** A **program** which is a set of rules to tell us that tell how the state should change
 - Based on the state we are in and the letter the **TAPE-HEAD** has just read, we may change states, print to the **TAPE**, and move the **TAPE-HEAD**.
 - The program is collection of directed edges connecting states together.
 - Each edge is labeled with (letter, letter, direction)

Our First Turing Machine

Tape:

Program:

Another Example – *aaabbb*

Another Another Example – abaaba

Regular Languages and Turing Machines

Theorem

Every regular language has a TM that accepts exactly it.

Proof.

- change all edge labels *a* and *b* to (*a*, *a*, *R*) and (*b*, *b*, *R*) respectively
- change the initial state to START
- create a new HALT state
- "toggle" the accepting states and add (Δ, Δ, R) transitions to HALT

Example

Regular Language Example

Consider the following cases:

- Strings with a double *a*
- 2 Strings without *aa* that end in *a*
- 3 Strings without *aa* that end in *b*

Classes of "Acceptance"

Definition

Every Turing Machine *T* over the alphabet Σ divides the set of input strings into three distinct classes:

- ACCEPT(*T*) is the set of all strings leading to a HALT state. This is also called the *language accepted* by *T*
- **REJECT**(*T*) is the set of all strings that crash during execution by either moving left from our first "cell" or by being in a state that has no exit edge by reading the character **TAPE-HEAD** is reading
- **S LOOP**(*T*) is the set of all other strings, that is, strings that loop forever while running on *T*

A Turing Machine accepting $L = \{a^n b^n a^n\}$

The INSERT Subprogram

- We would like to be able to *insert* a character into the string on the TAPE where the TAPE-HEAD is currently pointing.
- This action should not otherwise impact the tape in any way it is *independent*
- We wish to introduce a new "command" or state for our Turing Machine called INSERT.

INSERT

The DELETE Subprogram

- We would also like to be able to *delete* a character from the string on the TAPE where the TAPE-HEAD is currently pointing.
- This action should not otherwise impact the tape in any way it is *independent*
- We wish to introduce a new "command" or state for our Turing Machine called DELETE.

DELETE

• For example, if the string on our tape is *F***R***IEND* and *R* is where the tape head is pointing, after calling DELETE, *FIEND* is the string on the tape.

- (5pt) Build a TM that accepts the language of all words that do not contain the substring bbb
- (5pt) Build a TM that accepts { $a^n b^{2n}$ }
- (5pt) Trace aabbaa on the Turing Machine on Slide 11
- 6 (5pt) Trace aabbaa on the Turing Machine on Slide 7