

CSCI 340: Computational Models
 Turing Machines

The Turing Machine

- Regular Expressions

Acceptor: FA, TG
Nondeterminism equal? Yes
Closed Under: $L_{1}+L_{2} L_{1} L_{2} \quad L^{*} \quad L^{\prime} \quad L_{1} \cap L_{2}$
Decidability: Equivalence, emptiness, finiteness, membership
Examples: Text editors, Seq. Circuits

- Context-Free Grammars

Acceptor: PDA
Nondeterminism equal? No
Closed Under: $L_{1}+L_{2} L_{1} L_{2} L^{*}$
Decidability: Emptiness, finiteness, membership
Examples: Programming Language Statements, Compilers

The Turing Machine

- Regular Expressions

Acceptor: FA, TG
Nondeterminism equal? Yes
Closed Under: $L_{1}+L_{2} L_{1} L_{2} \quad L^{*} \quad L^{\prime} \quad L_{1} \cap L_{2}$
Decidability: Equivalence, emptiness, finiteness, membership
Examples: Text editors, Seq. Circuits

- Context-Free Grammars

Acceptor: PDA
Nondeterminism equal? No
Closed Under: $L_{1}+L_{2} L_{1} L_{2} L^{*}$
Decidability: Emptiness, finiteness, membership
Examples: Programming Language Statements, Compilers

- Type 0 Grammars

Acceptor: Turing machine, Post machine, 2PDA, nPDA
Nondeterminism equal? Yes
Closed Under: $L_{1}+L_{2} L_{1} L_{2} \quad L^{*} L_{1} \cap L_{2}$
Decidability: Not a whole lot
Examples: Computers

Turing Machines

- We can finally represent and model a computer!
- But when were all of these invented?

1950s: Regular Languages, FAs by Kleene, Mealy, Moore, Rabin, Scott 1960s: CFGs and PDAs by Chomsky, Oettinger, Schützenberger, Evey 1930s: Turing machines and Theory by Turing and Post

Turing Machines

Definition

A Turing Machine, denoted TM, is a collection of six things:
(1) An alphabet Σ of input letters which does not contain the blank symbol Δ
(2) A TAPE divided into numbers cells, each containing a character or a blank
(3) A TAPE-HEAD that can in one step READ the contents of a cell, WRITE a different character to a cell, and/or MOVE left/right one cell. It cannot move "left" of the beginning of the tape.
(4) An alphabet Γ of characters that can be written to the TAPE by the TAPE-HEAD. Γ can include Σ. The TAPE-HEAD can also print Δ but this is called erasing

Turing Machines

Definition

(5) A finite set of states including exactly one START state and (maybe) some HALT states that cause execution to terminate.
(6) A program which is a set of rules to tell us that tell how the state should change

- Based on the state we are in and the letter the TAPE-HEAD has just read, we may change states, print to the TAPE, and move the TAPE-HEAD.
- The program is collection of directed edges connecting states together.
- Each edge is labeled with (letter, letter, direction)

Our First Turing Machine

Tape:

a	b	a	Δ	Δ	Δ	

Program:

Another Example - aaabbb

Another Another Example - abaaba

Regular Languages and Turing Machines

Theorem

Every regular language has a TM that accepts exactly it.

Proof.

- change all edge labels a and b to (a, a, R) and (b, b, R) respectively
- change the initial state to START
- create a new HALT state
- "toggle" the accepting states and add (Δ, Δ, R) transitions to HALT

Example

EVEN-EVEN

Regular Language Example

(Δ, Δ, R)
(b, b, R)

Consider the following cases:
(1) Strings with a double a
(2) Strings without $a a$ that end in a
(3) Strings without $a a$ that end in b

Classes of "Acceptance"

Definition

Every Turing Machine T over the alphabet Σ divides the set of input strings into three distinct classes:
(1) $\operatorname{ACCEPT}(T)$ is the set of all strings leading to a HALT state. This is also called the language accepted by T
(2) REJECT (T) is the set of all strings that crash during execution by either moving left from our first "cell" or by being in a state that has no exit edge by reading the character TAPE-HEAD is reading
(3) $\operatorname{LOOP}(T)$ is the set of all other strings, that is, strings that loop forever while running on T

A Turing Machine accepting $L=\left\{a^{n} b^{n} a^{n}\right\}$

The INSERT Subprogram

- We would like to be able to insert a character into the string on the TAPE where the TAPE-HEAD is currently pointing.
- This action should not otherwise impact the tape in any way it is independent
- We wish to introduce a new "command" or state for our Turing Machine called INSERT.

```
INSERT \(a\)
```

INSERT

The DELETE Subprogram

- We would also like to be able to delete a character from the string on the TAPE where the TAPE-HEAD is currently pointing.
- This action should not otherwise impact the tape in any way it is independent
- We wish to introduce a new "command" or state for our Turing Machine called DELETE.

DELETE

- For example, if the string on our tape is FRIEND and R is where the tape head is pointing, after calling DELETE, FIEND is the string on the tape.

DELETE

Homework 10b

3 (5pt) Build a TM that accepts the language of all words that do not contain the substring $b b b$
(4) (5pt) Build a TM that accepts $\left\{a^{n} b^{2 n}\right\}$
(5) (5pt) Trace aabbaa on the Turing Machine on Slide 11

6 (5pt) Trace aabbaa on the Turing Machine on Slide 7

