
CSCI 340: Computational Models

Turing Machines

Chapter 19 Department of Computer Science



The Turing Machine

• Regular Expressions
Acceptor: FA, TG

Nondeterminism equal? Yes
Closed Under: L1 + L2 L1L2 L∗ L′ L1 ∩ L2

Decidability: Equivalence, emptiness, finiteness, membership
Examples: Text editors, Seq. Circuits
• Context-Free Grammars

Acceptor: PDA
Nondeterminism equal? No

Closed Under: L1 + L2 L1L2 L∗

Decidability: Emptiness, finiteness, membership
Examples: Programming Language Statements, Compilers

• Type 0 Grammars
Acceptor: Turing machine, Post machine, 2PDA, nPDA

Nondeterminism equal? Yes
Closed Under: L1 + L2 L1L2 L∗ L1 ∩ L2

Decidability: Not a whole lot
Examples: Computers

1 / 1



The Turing Machine

• Regular Expressions
Acceptor: FA, TG

Nondeterminism equal? Yes
Closed Under: L1 + L2 L1L2 L∗ L′ L1 ∩ L2

Decidability: Equivalence, emptiness, finiteness, membership
Examples: Text editors, Seq. Circuits
• Context-Free Grammars

Acceptor: PDA
Nondeterminism equal? No

Closed Under: L1 + L2 L1L2 L∗

Decidability: Emptiness, finiteness, membership
Examples: Programming Language Statements, Compilers

• Type 0 Grammars
Acceptor: Turing machine, Post machine, 2PDA, nPDA

Nondeterminism equal? Yes
Closed Under: L1 + L2 L1L2 L∗ L1 ∩ L2

Decidability: Not a whole lot
Examples: Computers

1 / 1



Turing Machines

• We can finally represent and model a computer!
• But when were all of these invented?
1950s: Regular Languages, FAs by Kleene, Mealy, Moore, Rabin, Sco�
1960s: CFGs and PDAs by Chomsky, Oe�inger, Schützenberger, Evey
1930s: Turing machines and Theory by Turing and Post

2 / 1



Turing Machines

Definition
A Turing Machine, denoted TM, is a collection of six things:

1 An alphabet Σ of input le�ers which does not contain the blank
symbol ∆

2 A TAPE divided into numbers cells, each containing a character
or a blank

3 A TAPE-HEAD that can in one step READ the contents of a cell,
WRITE a di�erent character to a cell, and/or MOVE le�/right
one cell. It cannot move “le�” of the beginning of the tape.

4 An alphabet Γ of characters that can be wri�en to the TAPE by
the TAPE-HEAD. Γ can include Σ. The TAPE-HEAD can also
print ∆ but this is called erasing

3 / 1



Turing Machines

Definition

5 A finite set of states including exactly one START state and
(maybe) some HALT states that cause execution to terminate.

6 A program which is a set of rules to tell us that tell how the
state should change
• Based on the state we are in and the le�er the TAPE-HEAD has

just read, we may change states, print to the TAPE, and move
the TAPE-HEAD.

• The program is collection of directed edges connecting states
together.

• Each edge is labeled with (le�er, le�er, direction)

4 / 1



Our First Turing Machine

Tape:

a b a ∆ ∆ ∆

Program:

START 2 3 HALT

(a, a, R)

(b, b, R)

(b, b, R)

(a, a, R)
(b, b, R)

(∆,∆, R)

5 / 1



Another Example — aaabbb

START

2

4

3 5

HALT

(a,A, R)

(a, a, R)
(B,B, R)

(b,B, L)

(a, a, L)

(B,B, L)

(A,A, R)

(a, a, L)

(A,A, R)

(B,B, R)

(∆,∆, R)

6 / 1



Another Another Example — abaaba

START HALT

2 3

4

5 6

7

(∆,∆, R)(a,∆, R)

(b,∆, R)
(b, b, R)

(a, a, R)

(∆,∆, L)

(b, b, R)

(a, a, R)

(∆,∆, L)

(∆,∆, R)

(b,∆, L)

(∆,∆, R)

(a,∆, L)(∆,∆, R)

(∆,∆, R)
(b, b, L)

(a, a, L)

(b, b, L)

(a, a, L)

7 / 1



Regular Languages and Turing Machines

Theorem
Every regular language has a TM that accepts exactly it.

Proof.

• change all edge labels a and b to (a, a, R) and (b, b, R)
respectively
• change the initial state to START
• create a new HALT state
• “toggle” the accepting states and add (∆,∆, R) transitions to

HALT

�

Example

EVEN-EVEN
8 / 1



Regular Language Example

START 2 HALT

(∆,∆, R)
(b, b, R)

(a, a, R)

(b, b, R)

(a, a, R)

Consider the following cases:

1 Strings with a double a

2 Strings without aa that end in a

3 Strings without aa that end in b

9 / 1



Classes of “Acceptance”

Definition
Every Turing Machine T over the alphabet Σ divides the set of input
strings into three distinct classes:

1 ACCEPT(T ) is the set of all strings leading to a HALT state.
This is also called the language accepted by T

2 REJECT(T ) is the set of all strings that crash during execution
by either moving le� from our first “cell” or by being in a state
that has no exit edge by reading the character TAPE-HEAD is
reading

3 LOOP(T ) is the set of all other strings, that is, strings that loop
forever while running on T

10 / 1



A Turing Machine accepting L = {anbnan}

START HALT

2 3 4

5

678

(∆,∆, R)

(a, ∗, R)

(a, a, R)

(b, b, R)

(b, b, R)

(a, a, L)

(b, a, R)

(a, a, R)

(∆,∆, L)

(a,∆, L)(a,∆, L)

(∗, ∗, R)

(a, a, L)
(b, b, L)

11 / 1



The INSERT Subprogram

• We would like to be able to insert a character into the string on
the TAPE where the TAPE-HEAD is currently pointing.
• This action should not otherwise impact the tape in any way —

it is independent
• We wish to introduce a new “command” or state for our Turing

Machine called INSERT.

INSERT a

12 / 1



INSERT

13 / 1



The DELETE Subprogram

• We would also like to be able to delete a character from the
string on the TAPE where the TAPE-HEAD is currently pointing.
• This action should not otherwise impact the tape in any way —

it is independent
• We wish to introduce a new “command” or state for our Turing

Machine called DELETE.

DELETE

• For example, if the string on our tape is FRIEND and R is where
the tape head is pointing, a�er calling DELETE, FIEND is the
string on the tape.

14 / 1



DELETE

15 / 1



Homework 10b

3 (5pt) Build a TM that accepts the language of all words that do
not contain the substring bbb

4 (5pt) Build a TM that accepts { anb2n }

5 (5pt) Trace aabbaa on the Turing Machine on Slide 11

6 (5pt) Trace aabbaa on the Turing Machine on Slide 7

16 / 1


