CSCI 340: Computational Models Regular Languages R

Chapter 9 Department of Computer Science

Regular Languages

If we can define a language by RE, then it's a *regular language*

Theorem

If L_1 and L_2 are regular languages, then $L_1 + L_2$ (union), L_1L_2 (concatenation), and L_1^* (closure) are also regular languages.

Proof by Regular Expression.

- There exists REs r₁ and r₂ that define the regular languages L₁ and L₂
- **2** There exists an RE $(\mathbf{r_1} + \mathbf{r_2})$ that defines the language $L_1 + L_2$
- **③** There exists an RE $\mathbf{r_1r_2}$ that defines the language L_1L_2
- **4** There exists an RE $\mathbf{r_1}^*$ that defines the language L_1^*
- All three of these sets of words are definable by RE □ The set of regular languages is *closed* under union, concatenation, and Kleene closure.

Proof by Machines

• Let us assume TG_1 and TG_2 exist that define languages L_1 and L_2 where each TG has a unique start and final state

4 L_1^* can be described by:

Proof by Machines

• Let us assume TG_1 and TG_2 exist that define languages L_1 and L_2 where each TG has a unique start and final state

4 L_1^* can be described by:

3 L_1L_2 can be described by:

Small problem for L_1^* when the start has incoming edges. We must replicate the start state. We could convert to FA- λ then to FA.

$$\Sigma = \{a \ b\}$$

 $L_1 =$ all words of 2+ letters that begin and end with the same letter
 $L_2 =$ all words that contain the substring*aba*

$$r_1 = a(a+b)^*a + b(a+b)^*b$$

$$r_2 = (a+b)^*aba(a+b)^*$$

 $\mathbf{r}_1 + \mathbf{r}_2 =$ $\mathbf{r}_1 \mathbf{r}_2 =$ $\mathbf{r}_1^* =$

$$\Sigma = \{a \ b\}$$

 $L_1 =$ all words of 2+ letters that begin and end with the same letter
 $L_2 =$ all words that contain the substring*aba*

$$r_1 = a(a + b)^*a + b(a + b)^*b$$

$$r_2 = (a + b)^*aba(a + b)^*$$

$$\begin{aligned} r_1 + r_2 &= [a(a + b)^*a + b(a + b)^*b] + [(a + b)^*aba(a + b)^*] \\ r_1r_2 &= \\ r_1^* &= \end{aligned}$$

$$\Sigma = \{a \ b\}$$

 $L_1 =$ all words of 2+ letters that begin and end with the same letter
 $L_2 =$ all words that contain the substring*aba*

$$r_1 = a(a+b)^*a + b(a+b)^*b$$

$$r_2 = (a+b)^*aba(a+b)^*$$

$$\begin{split} r_1 + r_2 &= \left[a(a+b)^*a + b(a+b)^*b\right] + \left[(a+b)^*aba(a+b)^*\right] \\ r_1r_2 &= \left[a(a+b)^*a + b(a+b)^*b\right]\left[(a+b)^*aba(a+b)^*\right] \\ r_1^* &= \end{split}$$

$$\Sigma = \{a \ b\}$$

 $L_1 =$ all words of 2+ letters that begin and end with the same letter
 $L_2 =$ all words that contain the substring*aba*

$$r_1 = a(a + b)^*a + b(a + b)^*b$$

$$r_2 = (a + b)^*aba(a + b)^*$$

$$\begin{split} r_1 + r_2 &= \left[a(a+b)^*a + b(a+b)^*b\right] + \left[(a+b)^*aba(a+b)^*\right] \\ r_1r_2 &= \left[a(a+b)^*a + b(a+b)^*b\right]\left[(a+b)^*aba(a+b)^*\right] \\ r_1^* &= \left[a(a+b)^*a + b(a+b)^*b\right]^* \end{split}$$

$$\Sigma = \{a \ b\}$$

 L_1 = all words of 2+ letters that begin and end with the same letter L_2 = all words that contain the substring*aba*

$$r_1 = a(a + b)^* a + b(a + b)^* b$$

 $r_2 = (a + b)^* aba(a + b)^*$

$$\begin{split} r_1 + r_2 &= \left[a(a+b)^*a + b(a+b)^*b\right] + \left[(a+b)^*aba(a+b)^*\right] \\ r_1r_2 &= \left[a(a+b)^*a + b(a+b)^*b\right]\left[(a+b)^*aba(a+b)^*\right] \\ r_1^* &= \left[a(a+b)^*a + b(a+b)^*b\right]^* \end{split}$$

Show the TGs that accept L_1 and L_2 Show $TG_1 + TG_2$, TG_1TG_2 , and TG_1^*

Complements and Intersections

Definition

If *L* is a language over alphabet Σ , we define its **complement**, *L'* to be the language of all strings of letters from Σ that are *not* words in *L*.

Example

If *L* is the language over the alphabet $\Sigma = \{a \ b\}$ of all words that have a double *a* in them, then *L'* is the language of all words that do not have a double *a*.

We must specify the alphabet Σ or else the complement of *L* might contain *cat*, *dog*, . . . (because they are definitely not strings in *L*).

$$(L')' = L$$

for obvious reasons (theorem in set theory)

Complements and Regular Languages

Theorem

If L is a regular language, then L' is also a regular language. In other words, the set of regular languages is closed under complementation.

Proof.

- If *L* is a regular language, we know from Kleene's theorem that there is some FA that accepts *L*.
- The states of FA are each either final or non-final
- Let us reverse the final status of each state (e.g. final → non-final, non-final → final)
- This new machine accepts all input strings the original FA rejected (*L'*). Likewise, the new machine rejects all input strings the original FA accepted (*L*).
- This new FA can be converted to an RE via Kleene's theorem \Box

Complements of Regular Languages Example

Complements of Regular Languages Example

Language Intersection

Theorem

If L_1 and L_2 are regular languages, than $L_1 \cap L_2$ is also a regular language. e.g. the set of regular languages is closed under intersection.

Language Intersection

From the above, it is obvious how $(L'_1 + L'_2)' = L_1 \cap L_2$

Algorithm for finding RE accepting $L_1 + L_2$

Algorithm

- **1** Define $\mathbf{r_1}$ and $\mathbf{r_2}$ which represent L_1 and L_2
- **2** Convert $\mathbf{r_1}$ and $\mathbf{r_2}$ to FA_1 and FA_2
- **③** Invert the states of FA_1 and FA_2 resulting in FA'_1 and FA'_2
- **4** Merge FA'_1 and FA'_2 into TG', then convert TG' into FA'_3
- **③** Invert the states of FA'_3 , resulting in FA_3 (which accepts $L_1 \cap L_2$)

Proof.

Algorithm for finding RE accepting $L_1 + L_2$

Algorithm

- **1** Define $\mathbf{r_1}$ and $\mathbf{r_2}$ which represent L_1 and L_2
- **2** Convert $\mathbf{r_1}$ and $\mathbf{r_2}$ to FA_1 and FA_2
- **③** Invert the states of FA_1 and FA_2 resulting in FA'_1 and FA'_2
- **4** Merge FA'_1 and FA'_2 into TG', then convert TG' into FA'_3
- **⑤** Invert the states of FA'_3 , resulting in FA_3 (which accepts $L_1 \cap L_2$)

Proof.

- 1 For a regular language, there exists a RE
- ② Given an RE, there exists an FA (Kleene's theorem)
- 3 We can complement an FA by swapping its states
- **4** We can describe $L'_1 + L'_2$ by merging two TGs
- **(5)** We can convert a TG to an RE

П

- L_1 = all strings with a double*a*
- L_2 = all strings with an even number of *a*'s

- L_1 = all strings with a double*a*
- L_2 = all strings with an even number of *a*'s

We can define L_1 and L_2 by the following REs:

$$r_1 = (a + b)^* aa(a + b)^*$$

 $r_2 = b^* (ab^* ab^*)^*$

- L_1 = all strings with a double*a*
- L_2 = all strings with an even number of *a*'s

We can define L_1 and L_2 by the following REs:

$$r_1 = (a + b)^* aa(a + b)^*$$

$$r_2 = b^* (ab^* ab^*)^*$$

Or the following FAs:

Swapping the states:

Merging (Creating the TG):

After converting the TG to FA:

After swapping all of the states:

And converting the FA to RE with the bypass algorithm:

 $(a + abb^*ab)^*a(a + bb^*aab^*a)(a + ab^*a)^*$

A Better Way ...

- Remember creating a machine that accepts FA₁ + FA₂ where FA₁ has x-states, FA₂ has y-states, and our new machine has z-states
- We identify all final *z*-states by *x*-or-*y* states being accepted upon the construction of our new machine
- Let's change the designation for FA₁ ∩ FA₂ to:
 All final *z*-states by *x*-and-*y* states being accepted upon the construction of our new machine
- Now the new FA accepts only strings that reach simultaneously on both machines

TL;DR – change the rules of determining a final state of two FAs to be the intersection (\cap) rather than union (+)

One Final Example

Our two languages will be:

 L_1 = all words that begin with ana L_2 = all words than end with ana $\mathbf{r_1} = \mathbf{a}(\mathbf{a} + \mathbf{b})^*$ $\mathbf{r_2} = (\mathbf{a} + \mathbf{b})^* \mathbf{a}$

An obvious solution is:

$$\mathbf{a}(\mathbf{a} + \mathbf{b})^*\mathbf{a} + \mathbf{a}$$

But now we need to prove it ...

For each of the following pars of regular languages, find a RE and FA that define $L_1 \cap L_2$

- 1. $(a + b)^* a$ $b(a + b)^*$
- 2. Even-length strings $(\mathbf{b} + \mathbf{ab})^*(\mathbf{a} + \lambda)$
- 3. Odd-length strings $\mathbf{a}(\mathbf{a} + \mathbf{b})^*$
- 4. Even-length strings Strings with an even number of *a*'s