CSCI 340: Computational Models

Regular Languages

Chapter 9

Regular Languages

o
If we can define a language by RE, then it’s a regular language
Theorem

If Ly and L, are regular languages, then L, + L, (union), LyL;
(concatenation), and L1* (closure) are also regular languages.

Proof by Regular Expression.

@ There exists REs ry and r; that define the regular languages L,
and L,

@ There exists an RE (ry + rp) that defines the language L; + L,
© There exists an RE rqr; that defines the language L1L,
@ There exists an RE r{* that defines the language Li*

@ All three of these sets of words are definable by RE O

The set of regular languages is closed under union, concatenation,
and Kleene closure.

1/15

Proof by Machines
__

© Let us assume TGy and TG, exist that define languages Ly and
L, where each TG has a unique start and final state

® L, + L, can be described by: @ LiL; can be described by:

A

()
)

® L:" can be described by:

()

O

2/15

Proof by Machines

@ Let us assume TGy and TG, exist that define languages L; and
L, where each TG has a unique start and final state

® L+ L, can be described by:

>

) 1)
TG, TG,

O Li" can be described by:

-

A
TG

A

()

® L¢L; can be described by:
()"
A
()™
Small problem for L;* when the start has
incoming edges. We must replicate the

start state. We could convert to FA-A then
to FA. O

2/15

Example

_
> ={a b}
Ly = all words of 2+ letters that begin and end with the same letter
L, = all words that contain the substringaba
ri=a(a+b)a+b(a+b)b
r; = (a+ b)*aba(a + b)*
r{+rx=

rirz

*
ri =

Example
_

> ={a b}
Ly = all words of 2+ letters that begin and end with the same letter

L, = all words that contain the substringaba

ri=a(a+b)a+b(a+b)b
r; = (a + b)*aba(a + b)*

ri +rp, = [a(a+ b)'a+b(a+b)'b] +[(a+ b)'aba(a + b)*]
rir =

*
ri =

Example
_

> ={a b}
Ly = all words of 2+ letters that begin and end with the same letter

L, = all words that contain the substringaba

ri=a(a+b)a+b(a+b)b
r; = (a + b)*aba(a + b)*

ri +rp, = [a(a+ b)'a+b(a+b)'b] +[(a+ b)'aba(a + b)*]
rirp = [a(a+ b)*a+ b(a+ b)*b][(a + b)*aba(a + b)*]

*
ri =

Example
_

> ={a b}
Ly = all words of 2+ letters that begin and end with the same letter

L, = all words that contain the substringaba

ri=a(a+b)a+b(a+b)b
r; = (a + b)*aba(a + b)*

ri +rp, = [a(a+ b)'a+b(a+b)'b] +[(a+ b)'aba(a + b)*]
rirp = [a(a+ b)*a+ b(a+ b)*b][(a + b)*aba(a + b)*]
ri" =[a(a+b)*a+b(a+b)'b]

Example

> ={a b}
Ly = all words of 2+ letters that begin and end with the same letter

L, = all words that contain the substringaba

ri=a(a+b)a+b(a+b)b
r = (a + b)*aba(a + b)*

ri +r, = [a(a+ b)'a+ b(a+ b)'b] + [(a + b)*aba(a + b)*]
rirp = [a(a+ b)*a+ b(a+ b)*b][(a + b)*aba(a + b)*]
ri" =[a(a+b)*a+b(a+b)'b]"

Show the TGs that accept L; and L,
Show TG+ TG,, TG TG, and TG1>k

Complements and Intersections
__

If Lis a language over alphabet %, we define its complement, L’ to
be the language of all strings of letters from X that are not words in L.

Example

If L is the language over the alphabet ¥ = {a b} of all words that
have a double a in them, then L’ is the language of all words that do
not have a double a.

We must specify the alphabet X or else the complement of L might
contain cat, dog, . .. (because they are definitely not strings in L).

(L' =1
for obvious reasons (theorem in set theory)

4/15

Complements and Regular Languages

__

If Lis a regular language, then L’ is also a regular language. In other
words, the set of regular languages is closed under complementation.

® If Lis a regular language, we know from Kleene’s theorem that
there is some FA that accepts L.

® The states of FA are each either final or non-final

® Let us reverse the final status of each state
(e.g. final = non-final, non-final — final)

® This new machine accepts all input strings the original FA
rejected (L). Likewise, the new machine rejects all input strings
the original FA accepted (L).

® This new FA can be converted to an RE via Kleene’s theorem 0

5/15

Complements of Regular Languages Example
__

Complements of Regular Languages Example
__

() @O—=

a b

Language Intersection

— Theorem

If Ly and L, are regular languages, than L1 N L, is also a regular
language. e.g. the set of regular languages is closed under intersection.

L L, LiNL,

QO (&) -) I,

L L L+ L

7/15

Language Intersection

L, L, LinL
L] L) L+ L)

From the above, it is obvious how (L] + L))" = Ly N L,

Algorithm for finding RE accepting L + L;

- Algorithm

@ Define ry and rp which represent Ly and L,

® Convert r; and r, to FA; and FA,

© Invert the states of FA; and FA; resulting in FA] and FA)

O Merge FA] and FA] into TG’, then convert TG’ into FA]

@® Invert the states of FA], resulting in FA3 (which accepts Ly N Ly)

8/15

Algorithm for finding RE accepting L + L;

- Algorithm

@ Define ry and rp which represent Ly and L,

® Convert r; and r, to FA; and FA,

© Invert the states of FA; and FA; resulting in FA] and FA)

O Merge FA] and FA] into TG’, then convert TG’ into FA]

@® Invert the states of FA], resulting in FA3 (which accepts Ly N Ly)

@ For a regular language, there exists a RE

® Given an RE, there exists an FA (Kleene’s theorem)

® We can complement an FA by swapping its states

©® We can describe L} + L) by merging two TGs

® We can convert a TG to an RE O

8/15

Example
B

Ly = all strings with a doublea

L, = all strings with an even number of a’s

9/15

Example
_

Ly = all strings with a doublea

L, = all strings with an even number of a’s
We can define Ly and L, by the following REs:

r; = (a+ b)*aa(a + b)*
r, = b*(ab*ab*)”

Example

Ly = all strings with a doublea

L, = all strings with an even number of a’s
We can define Ly and L, by the following REs:

r; = (a+ b)*aa(a + b)*
r, = b*(ab*ab*)”

Or the following FAs:

2OS0T0

Example

Swapping the states:

onoNORIO

Merging (Creating the TG):
b

b

Example

After converting the TG to FA:

o (o —— (=)D
@ . b

Example

After swapping all of the states:

a
b Z3
/an
[b a a
a b
a

And converting the FA to RE with the bypass algorithm:

(a + abb*ab)*a(a + bb*aab*a)(a + ab*a)"

A Better Way...
__

® Remember creating a machine that accepts FA; + FA; where FA;
has x-states, FA; has y-states, and our new machine has z-states

® We identify all final z-states by x-or-y states being accepted
upon the construction of our new machine

® Let’s change the designation for FA; N FA, to:
All final z-states by x-and-y states being accepted upon the
construction of our new machine

® Now the new FA accepts only strings that reach simultaneously
on both machines

TL;DR - change the rules of determining a final state of two FAs to
be the intersection (N) rather than union (+)

13/15

One Final Example

Our two languages will be:

Ly = all words that begin with ana
L, = all words than end with ana
r; = a(a+b)*

r =(a+b)a

An obvious solution is:
a(a+b)at+ta

But now we need to prove it...

14/15

Homework 6a

For each of the following pars of regular languages, find a RE and FA
that define L] N l_2

1.

2.

3.

(a+b)a b(a + b)*
Even-length strings (b + ab)*(a + 1)
Odd-length strings a(a + b)"

Even-length strings Strings with an even number of a’s

