
CSCI 340: Computational Models

Regular Languages

Chapter 9 Department of Computer Science



Regular Languages

If we can define a language by RE, then it’s a regular language
Theorem
If L1 and L2 are regular languages, then L1 + L2 (union) , L1L2

(concatenation), and L1
∗ (closure) are also regular languages.

Proof by Regular Expression.

1 There exists REs r1 and r2 that define the regular languages L1

and L2

2 There exists an RE (r1 + r2) that defines the language L1 + L2

3 There exists an RE r1r2 that defines the language L1L2

4 There exists an RE r1∗ that defines the language L1
∗

5 All three of these sets of words are definable by RE �

The set of regular languages is closed under union, concatenation,
and Kleene closure.

1 / 15



Proof by Machines

1 Let us assume TG1 and TG2 exist that define languages L1 and
L2 where each TG has a unique start and final state

2 L1 + L2 can be described by:

TG1 TG2

− −

+ +

λ λ

3 L1L2 can be described by:

TG1

TG2

− +

− +

λ

4 L1
∗ can be described by:

TG1− +
λ

λ �
2 / 15



Proof by Machines

1 Let us assume TG1 and TG2 exist that define languages L1 and
L2 where each TG has a unique start and final state

2 L1 + L2 can be described by:

TG1 TG2

− −

+ +

λ λ

3 L1L2 can be described by:

TG1

TG2

− +

− +

λ

4 L1
∗ can be described by:

TG1− +
λ

λ

Small problem for L1
∗ when the start has

incoming edges. We must replicate the
start state. We could convert to FA-λ then
to FA. �

2 / 15



Example

Σ = {a b}

L1 = all words of 2+ le�ers that begin and end with the same le�er

L2 = all words that contain the substringaba

r1 = a(a + b)∗a + b(a + b)∗b
r2 = (a + b)∗aba(a + b)∗

r1 + r2 =
r1r2 =
r1∗ =

3 / 15



Example

Σ = {a b}

L1 = all words of 2+ le�ers that begin and end with the same le�er

L2 = all words that contain the substringaba

r1 = a(a + b)∗a + b(a + b)∗b
r2 = (a + b)∗aba(a + b)∗

r1 + r2 = [a(a + b)∗a + b(a + b)∗b] + [(a + b)∗aba(a + b)∗]
r1r2 =
r1∗ =

3 / 15



Example

Σ = {a b}

L1 = all words of 2+ le�ers that begin and end with the same le�er

L2 = all words that contain the substringaba

r1 = a(a + b)∗a + b(a + b)∗b
r2 = (a + b)∗aba(a + b)∗

r1 + r2 = [a(a + b)∗a + b(a + b)∗b] + [(a + b)∗aba(a + b)∗]
r1r2 = [a(a + b)∗a + b(a + b)∗b] [(a + b)∗aba(a + b)∗]
r1∗ =

3 / 15



Example

Σ = {a b}

L1 = all words of 2+ le�ers that begin and end with the same le�er

L2 = all words that contain the substringaba

r1 = a(a + b)∗a + b(a + b)∗b
r2 = (a + b)∗aba(a + b)∗

r1 + r2 = [a(a + b)∗a + b(a + b)∗b] + [(a + b)∗aba(a + b)∗]
r1r2 = [a(a + b)∗a + b(a + b)∗b] [(a + b)∗aba(a + b)∗]
r1∗ = [a(a + b)∗a + b(a + b)∗b]∗

3 / 15



Example

Σ = {a b}

L1 = all words of 2+ le�ers that begin and end with the same le�er

L2 = all words that contain the substringaba

r1 = a(a + b)∗a + b(a + b)∗b
r2 = (a + b)∗aba(a + b)∗

r1 + r2 = [a(a + b)∗a + b(a + b)∗b] + [(a + b)∗aba(a + b)∗]
r1r2 = [a(a + b)∗a + b(a + b)∗b] [(a + b)∗aba(a + b)∗]
r1∗ = [a(a + b)∗a + b(a + b)∗b]∗

Show the TGs that accept L1 and L2

Show TG1 + TG2, TG1TG2, and TG1
∗

3 / 15



Complements and Intersections

Definition
If L is a language over alphabet Σ, we define its complement, L′ to
be the language of all strings of le�ers from Σ that are not words in L.

Example

If L is the language over the alphabet Σ = {a b} of all words that
have a double a in them, then L′ is the language of all words that do
not have a double a.

We must specify the alphabet Σ or else the complement of L might
contain cat , dog, . . . (because they are definitely not strings in L).

(L′)′ = L

for obvious reasons (theorem in set theory)

4 / 15



Complements and Regular Languages

Theorem
If L is a regular language, then L′ is also a regular language. In other
words, the set of regular languages is closed under complementation.

Proof.

• If L is a regular language, we know from Kleene’s theorem that
there is some FA that accepts L.
• The states of FA are each either final or non-final
• Let us reverse the final status of each state

(e.g. final→ non-final, non-final→ final)
• This new machine accepts all input strings the original FA

rejected (L′). Likewise, the new machine rejects all input strings
the original FA accepted (L).
• This new FA can be converted to an RE via Kleene’s theorem �

5 / 15



Complements of Regular Languages Example

q0 q1 q2 q3

q4

a

b a

b a, b

a, b

a, b

6 / 15



Complements of Regular Languages Example

q0 q1 q2 q3

q4

a

b a

b a, b

a, b

a, b

6 / 15



Language Intersection

Theorem
If L1 and L2 are regular languages, than L1 ∩ L2 is also a regular
language. e.g. the set of regular languages is closed under intersection.

L1 L2 L1 L2 L1 L2

L1 L2 L1 ∩ L2

L1 L2 L1 L2 L1 L2

L′1 L′2 L′1 + L
′
2

From the above, it is obvious how (L′1 + L
′
2)
′ = L1 ∩ L2

7 / 15



Language Intersection

L1 L2 L1 L2 L1 L2

L1 L2 L1 ∩ L2

L1 L2 L1 L2 L1 L2

L′1 L′2 L′1 + L
′
2

From the above, it is obvious how (L′1 + L
′
2)
′ = L1 ∩ L2

7 / 15



Algorithm for finding RE accepting L1 + L2

Algorithm

1 Define r1 and r2 which represent L1 and L2

2 Convert r1 and r2 to FA1 and FA2

3 Invert the states of FA1 and FA2 resulting in FA′1 and FA′2
4 Merge FA′1 and FA′2 into TG′, then convert TG′ into FA′3
5 Invert the states of FA′3, resulting in FA3 (which accepts L1 ∩ L2)

Proof.

1 For a regular language, there exists a RE

2 Given an RE, there exists an FA (Kleene’s theorem)

3 We can complement an FA by swapping its states

4 We can describe L′1 + L
′
2 by merging two TGs

5 We can convert a TG to an RE �

8 / 15



Algorithm for finding RE accepting L1 + L2

Algorithm

1 Define r1 and r2 which represent L1 and L2

2 Convert r1 and r2 to FA1 and FA2

3 Invert the states of FA1 and FA2 resulting in FA′1 and FA′2
4 Merge FA′1 and FA′2 into TG′, then convert TG′ into FA′3
5 Invert the states of FA′3, resulting in FA3 (which accepts L1 ∩ L2)

Proof.

1 For a regular language, there exists a RE

2 Given an RE, there exists an FA (Kleene’s theorem)

3 We can complement an FA by swapping its states

4 We can describe L′1 + L
′
2 by merging two TGs

5 We can convert a TG to an RE �

8 / 15



Example

L1 = all strings with a doublea

L2 = all strings with an even number of a’s

We can define L1 and L2 by the following REs:

r1 = (a + b)∗aa(a + b)∗

r2 = b∗(ab∗ab∗)∗

Or the following FAs:

x0 x1 x2 y0 y1

a

b

b

a

a, b

a

b

a

b

9 / 15



Example

L1 = all strings with a doublea

L2 = all strings with an even number of a’s

We can define L1 and L2 by the following REs:

r1 = (a + b)∗aa(a + b)∗

r2 = b∗(ab∗ab∗)∗

Or the following FAs:

x0 x1 x2 y0 y1

a

b

b

a

a, b

a

b

a

b

9 / 15



Example

L1 = all strings with a doublea

L2 = all strings with an even number of a’s

We can define L1 and L2 by the following REs:

r1 = (a + b)∗aa(a + b)∗

r2 = b∗(ab∗ab∗)∗

Or the following FAs:

x0 x1 x2 y0 y1

a

b

b

a

a, b

a

b

a

b

9 / 15



Example

Swapping the states:

x0 x1 x2 y0 y1

a

b

b

a

a, b

a

b

a

b

Merging (Creating the TG):

q0

x0 x1 x2

y0 y1

ab

b

a a, b

a

b
a

b

λ

λ

10 / 15



Example

A�er converting the TG to FA:

z1 z2

z3

z4 z5

z6

a

b

a

b

a

b

a

b
a

b

a

b

11 / 15



Example

A�er swapping all of the states:

z1 z2

z3

z4 z5

z6

a

b

a

b

a

b

a

b
a

b

a

b

And converting the FA to RE with the bypass algorithm:

(a + abb∗ab)∗a(a + bb∗aab∗a)(a + ab∗a)∗

12 / 15



A Be�er Way...

• Remember creating a machine that accepts FA1 + FA2 where FA1

has x-states, FA2 has y-states, and our new machine has z-states
• We identify all final z-states by x-or-y states being accepted

upon the construction of our new machine
• Let’s change the designation for FA1 ∩ FA2 to:

All final z-states by x-and-y states being accepted upon the
construction of our new machine
• Now the new FA accepts only strings that reach simultaneously

on both machines

TL;DR – change the rules of determining a final state of two FAs to
be the intersection (∩) rather than union (+)

13 / 15



One Final Example

Our two languages will be:

L1 = all words that begin with ana

L2 = all words than end with ana

r1 = a(a + b)∗

r2 = (a + b)∗a

An obvious solution is:

a(a + b)∗a + a

But now we need to prove it...

14 / 15



Homework 6a

For each of the following pars of regular languages, find a RE and FA
that define L1 ∩ L2

1. (a + b)∗a b(a + b)∗

2. Even-length strings (b + ab)∗(a + λ)

3. Odd-length strings a(a + b)∗

4. Even-length strings Strings with an even number of a’s

15 / 15


