CSCI 340: Computational Models

Context-Free Grammars

R

Chapter 12 Department of Computer Science

Originally needed a way to write complicated expressions on one line

$$\frac{\frac{1}{2} + 9}{4 + \frac{8}{21} + \frac{5}{3 + \frac{1}{2}}}$$

vs.

(((1/2)+9)/(4+(8/21)+(5/(3+(1/2)))))

Syntax to Machine Executable Code

- Conversion from high-level language to machine-executable code is done by a **compiler**
- Must determine the order of instructions executed
- Must determine the underlying meaning

Example: Arithmetic Expressions

- Any number is in the set AE
- 2 If x and y are in the set AE, then so are:

(x) - (x) (x + y) (x - y) (x * y) (x/y) (x * * y)

Sample Input:

$$((3+4)*(6+7))$$

((3+4)*(6+7))

Rule Expansion:

3 is in AE 4 is in AE (3 + 4) is in AE 6 is in AE 7 is in AE (6 + 7) is in AE ((3 + 4) * (6 + 7)) is in AE Algorithmic Conversion:

LOAD 3 into R1 LOAD 4 into R2 ADD contents of R1 and R2 into R3 LOAD 6 into R4 LOAD 7 into R5 ADD contents of R4 and R5 into R6 MUL contents of R3 and R6 into R7

In order to do *any* of this, we need to **parse** the expression. In the case of *AE*, this is a *generative grammar*

Syntax-Defining Languages - English?

- A <u>sentence</u> can be a <u>subject</u> followed by a <u>predicate</u>
- A <u>subject</u> can be a <u>noun-phrase</u>
- A <u>noun-phrase</u> can be an <u>adjective</u> followed by a <u>noun-phrase</u>
- A <u>noun-phrase</u> can be an <u>article</u> followed by a <u>noun-phrase</u>
- **6** A <u>noun-phrase</u> can be a <u>noun</u>
- 6 A *predicate* can be a *verb* followed by a *noun-phrase*
- A <u>noun</u> can be

		apple	bear	cat	dog
8	A <u>verb</u> can be				
		eats	follows	gets	hugs
9	An <i>adjective</i> car	n be			
			itchy	jumpy	
	An article can b				

① An <u>article</u> can be

a an the

The itchy bear hugs the jumpy dog

sentence		
<u>subject predicate</u>		
<u>noun-phrase predicate</u>	Rule 2	
<u>noun-phrase</u> <u>verb</u> <u>noun-phrase</u>		
<u>article noun-phrase verb noun-phrase</u>	Rule 4	
<u>article adjective noun verb noun-phrase</u>	Rule 3	
<u>article adjective noun verb article noun-phrase</u>	Rule 5	
article adjective noun verb article adjective noun-phrase	Rule 4	
<u>article adjective noun verb article adjective noun</u>	Rule 3	
the <u>adjective noun verb</u> <u>article</u> <u>adjective</u> <u>noun</u>	Rule 10	
the itchy <u>noun verb</u> <u>article</u> <u>adjective</u> <u>noun</u>	Rule 9	
the itchy bear <u>verb article</u> <u>adjective</u> <u>noun</u>	Rule 7	
the itchy bear hugs <u>article</u> <u>adjective</u> <u>noun</u>	Rule 8	
the itchy bear hugs the <u>adjective</u> <u>noun</u>	Rule 10	
the itchy bear hugs the jumpy <u>noun</u>	Rule 9	
the itchy bear hugs the jumpy dog	Rule 7	

Grammar Nonsense

Given the rules listed, we can construct the following:

itchy itchy itchy bear

This is gross but possible. We could rewrite some of our grammar!

<u>noun-phrase</u> → <u>adjective</u> * <u>noun</u>

We can also have our own number of dumb sentences, but it's still *valid*. Because we don't consider semantics, diction, or any sense – really – we call this a "formal language"

Arithmetic Expression

$$\frac{\text{Start}}{\text{AE}} \rightarrow (\underline{AE})$$

$$\underline{AE} \rightarrow (\underline{AE} + \underline{AE})$$

$$\underline{AE} \rightarrow (\underline{AE} - \underline{AE})$$

$$\underline{AE} \rightarrow (\underline{AE} + \underline{AE})$$

$$\underline{AE} \rightarrow (\underline{$$

All substitutions made are always of one of the following two forms:

 $\frac{\text{Non-Terminal}}{\text{or}} \rightarrow \frac{\text{Non-Terminal-1}}{\text{or}} \dots \frac{\text{Non-Terminal-N}}{\text{Non-Terminal}} \rightarrow \text{Terminal-1} \dots \text{Terminal-N}$

- The sequence of repetitive applications of rules is called a **derivation** or **generation** of a word.
- The grammatical rules are known as productions.
- There is no guarantee the derivation will be unique

These are known as Context-Free Grammars (or CFGs)

Context-Free Grammars

Definition

A context-free grammar, CFG, is a collection of three things:

- An alphabet Σ of letters called terminals from which we are going to make strings that will be the words of a language
- A set of symbols called non-terminals, one of which is the symbol S, standing for "start here"
- A finite set of productions of the form: <u>NT</u> \rightarrow finite string of *terminals* and/or <u>NT</u>'s

where the strings of terminals and non-terminals can consist:

- of any mixture of terminals or non-terminals, or
- the empty string.

One production **must** have the non-terminal *S* as its left side.

Non-terminals are often CAPITALIZED; terminals are usually lowercase

Definition

The **language generated** by a CFG is the set of all strings of terminals that can be produced from the start symbol *S* using the productions as substitutions. A language generated by a CFG is called a **context-free language**, abbreviated **CFL**.

Other terms used:

- language defined by the CFG
- language derived from the CFG
- language produced by the CFG

Example

Let the only terminal be *a* and the productions be:

 $\mathbf{0} \ S \to aS$ $S \to \lambda$

Apply Prod-1 six times and then apply Prod-2:

 $\Rightarrow aS$ $\Rightarrow aaS$ \Rightarrow aaaS \Rightarrow aaaaS \Rightarrow aaaaaaS

 \Rightarrow aaaaaaS

- \Rightarrow aaaaaaa
- = aaaaaaa

What language does this define?

More examples

Example $(\lambda \neq \Lambda)$

- $\bullet S \to SS$
- $2 S \rightarrow a$

Here, Λ represents it can be removed from the final string, but it is neither terminal nor non-terminal

Example

- $\bullet S \to aS$
- $S \to bS$
- $S \to a$

Two more Examples

Example				
$ S \to X $				
$ S \to Y $				
$ X \to \Lambda $				
$ Y \to bY $				
$? Y \to b $				
ivemple				
zampie				
$ S \to bS $				
$ S \to \Lambda $				

Perhaps a useful grammar?

Example

- $\bullet S \to XaaX$
- $X \to aX$
- $X \to bX$
- $A X \to \Lambda$

Perhaps a useful grammar?

Example

- $\bullet S \to XaaX$
- $X \to aX$
- $X \to bX$
- $X \to \Lambda$

 $(\mathbf{a} + \mathbf{b})^* \mathbf{a} \mathbf{a} (\mathbf{a} + \mathbf{b})^*$

Defining a "complicated" regular language

Example				
$\bullet S \to SS$				
$ S \to BS $				
$ S \to SB $				
$ 5 S \rightarrow USU $				
$6 \ B \to aa$				
$ B \to bb $				
$ 0 U \to ab $				
$ 0 \ U \to ba $				

Defining non-regular languages

Example

- $\bullet S \to aSa$
- $S \to bSb$
- $\textbf{3} \hspace{0.1 cm} S \to \Lambda$

Example

- $\bullet S \to aSa$
- $S \to b$

EQUAL

Example

- $\bullet S \to aB$
- $S \to bA$
- $A \to aS$
- $\textbf{6} \ B \rightarrow b$
- $\square B \rightarrow bS$
- $\textcircled{B} B \rightarrow aBB$

Why does this work?

Compression of Syntax

It is common for the same non-terminal to be the left side of more than one production. We introduce the symbol " | ", a vertical line, to mean disjunction (or).

$\begin{array}{l} S \to aS \\ S \to \Lambda \end{array}$	$S \to aS \mid \Lambda$
$S \rightarrow X$	
$S \to Y$	
$X \to \Lambda$	$S \to X \mid Y$
$Y \rightarrow aY$	$X \to \Lambda$
$Y \rightarrow bY$	$Y \to aY \mid bY \mid a \mid b$
$Y \rightarrow a$	
$Y \rightarrow b$	

Ambiguity

Definition

A CFG is called **ambiguous** if for at least one word in the language that it generates there are two possible derivations of the word that correspond to different *syntax trees*. If a CFG is not ambiguous, it is called **unambiguous**.

Example

$$S \to aSa \mid bSb \mid a \mid b \mid \Lambda$$

Example

 $S \rightarrow aS \mid Sa \mid a$