
CSCI 340: Computational Models

Context-Free Grammars

Chapter 12 Department of Computer Science

Syntax as a Method for Defining Languages

Originally needed a way to write complicated expressions on one line

1
2 + 9

4 + 8
21 +

5
3+ 1

2

vs.

(((1/2)+9)/(4+(8/21)+(5/(3+(1/2)))))

1 / 19

Syntax to Machine Executable Code

• Conversion from high-level language to machine-executable
code is done by a compiler
• Must determine the order of instructions executed
• Must determine the underlying meaning

Example: Arithmetic Expressions

1 Any number is in the set AE

2 If x and y are in the set AE , then so are:
(x) − (x) (x + y) (x − y) (x ∗ y) (x/y) (x ∗ ∗y)

Sample Input:

((3 + 4) ∗ (6 + 7))

2 / 19

((3 + 4) ∗ (6 + 7))

Rule Expansion:

3 is in AE
4 is in AE
(3 + 4) is in AE
6 is in AE
7 is in AE
(6 + 7) is in AE
((3 + 4) ∗ (6 + 7)) is in AE

Algorithmic Conversion:

LOAD 3 into R1
LOAD 4 into R2
ADD contents of R1 and R2 into R3
LOAD 6 into R4
LOAD 7 into R5
ADD contents of R4 and R5 into R6
MUL contents of R3 and R6 into R7

In order to do any of this, we need to parse the expression. In the
case of AE , this is a generative grammar

3 / 19

Syntax-Defining Languages – English?

1 A sentence can be a subject followed by a predicate

2 A subject can be a noun-phrase

3 A noun-phrase can be an adjective followed by a noun-phrase

4 A noun-phrase can be an article followed by a noun-phrase

5 A noun-phrase can be a noun

6 A predicate can be a verb followed by a noun-phrase

7 A noun can be
apple bear cat dog

8 A verb can be
eats follows gets hugs

9 An adjective can be
itchy jumpy

10 An article can be
a an the

4 / 19

The itchy bear hugs the jumpy dog

sentence
subject predicate Rule 1
noun-phrase predicate Rule 2
noun-phrase verb noun-phrase Rule 6
article noun-phrase verb noun-phrase Rule 4
article adjective noun verb noun-phrase Rule 3
article adjective noun verb article noun-phrase Rule 5
article adjective noun verb article adjective noun-phrase Rule 4
article adjective noun verb article adjective noun Rule 3
the adjective noun verb article adjective noun Rule 10
the itchy noun verb article adjective noun Rule 9
the itchy bear verb article adjective noun Rule 7
the itchy bear hugs article adjective noun Rule 8
the itchy bear hugs the adjective noun Rule 10
the itchy bear hugs the jumpy noun Rule 9
the itchy bear hugs the jumpy dog Rule 7

5 / 19

Grammar Nonsense

Given the rules listed, we can construct the following:

itchy itchy itchy itchy bear

This is gross but possible. We could rewrite some of our grammar!

noun-phrase→ adjective ∗ noun

We can also have our own number of dumb sentences, but it’s still
valid. Because we don’t consider semantics, diction, or any sense –
really – we call this a “formal language”

6 / 19

Arithmetic Expression

Start → (AE)

AE → (AE + AE)

AE → (AE − AE)

AE → (AE ∗ AE)

AE → (AE /AE)

AE → (AE **AE)

AE → (AE)

AE → − (AE)

AE → − (ANY-NUMBER)

ANY-NUMBER → FIRST-DIGIT

FIRST-DIGIT → FIRST-DIGIT OTHER-DIGIT

FIRST-DIGIT → 1 2 3 4 5 6 7 8 9

OTHER-DIGIT → 0 1 2 3 4 5 6 7 8 9
7 / 19

Generative Grammars

All substitutions made are always of one of the following two forms:

Non-Terminal → Non-Terminal-1 ... Non-Terminal-N
or

Non-Terminal → Terminal-1 ... Terminal-N

• The sequence of repetitive applications of rules is called a
derivation or generation of a word.
• The grammatical rules are known as productions.
• There is no guarantee the derivation will be unique

These are known as Context-Free Grammars (or CFGs)

8 / 19

Context-Free Grammars

Definition
A context-free grammar, CFG, is a collection of three things:

1 An alphabet Σ of le�ers called terminals from which we are
going to make strings that will be the words of a language

2 A set of symbols called non-terminals, one of which is the
symbol S, standing for “start here”

3 A finite set of productions of the form:
NT → finite string of terminals and/or NT ’s

where the strings of terminals and non-terminals can consist:
• of any mixture of terminals or non-terminals, or
• the empty string.

One production must have the non-terminal S as its le� side.

Non-terminals are o�en CAPITALIZED; terminals are usually lowercase

9 / 19

Context-Free Languages

Definition
The language generated by a CFG is the set of all strings of
terminals that can be produced from the start symbol S using the
productions as substitutions. A language generated by a CFG is
called a context-free language, abbreviated CFL.

Other terms used:
• language defined by the CFG
• language derived from the CFG
• language produced by the CFG

10 / 19

Example

Let the only terminal be a and the productions be:
1 S → aS
2 S → λ

Apply Prod-1 six times and then apply Prod-2:

⇒ aS

⇒ aaS

⇒ aaaS

⇒ aaaaS

⇒ aaaaaS

⇒ aaaaaaS

⇒ aaaaaaλ

= aaaaaa

What language does this define?
11 / 19

More examples

Example (λ , Λ)

1 S → SS

2 S → a

3 S → Λ

Here, Λ represents it can be removed from the final string, but it is
neither terminal nor non-terminal

Example

1 S → aS

2 S → bS

3 S → a

4 S → b

12 / 19

Two more Examples

Example

1 S → X

2 S → Y

3 X → Λ

4 Y → aY

5 Y → bY

6 Y → a

7 Y → b

Example

1 S → aS

2 S → bS

3 S → Λ

13 / 19

Perhaps a useful grammar?

Example

1 S → XaaX

2 X → aX

3 X → bX

4 X → Λ

(a + b)∗aa(a + b)∗

14 / 19

Perhaps a useful grammar?

Example

1 S → XaaX

2 X → aX

3 X → bX

4 X → Λ

(a + b)∗aa(a + b)∗

14 / 19

Defining a “complicated” regular language

Example

1 S → SS

2 S → BS

3 S → SB

4 S → Λ

5 S → USU

6 B→ aa

7 B→ bb

8 U → ab

9 U → ba

15 / 19

Defining non-regular languages

Example

1 S → aSb

2 S → Λ

Example

1 S → aSa

2 S → bSb

3 S → Λ

Example

1 S → aSa

2 S → b

16 / 19

EQUAL

Example

1 S → aB

2 S → bA

3 A→ a

4 A→ aS

5 A→ bAA

6 B→ b

7 B→ bS

8 B→ aBB

Why does this work?

17 / 19

Compression of Syntax

It is common for the same non-terminal to be the le� side of more
than one production. We introduce the symbol “ | ”, a vertical line, to
mean disjunction (or).

S → aS
S → Λ

S → aS | Λ

S → X
S → Y
X → Λ
Y → aY
Y → bY
Y → a
Y → b

S → X | Y
X → Λ
Y → aY | bY | a | b

18 / 19

Ambiguity

Definition
A CFG is called ambiguous if for at least one word in the language
that it generates there are two possible derivations of the word that
correspond to di�erent syntax trees. If a CFG is not ambiguous, it is
called unambiguous.

Example

S → aSa | bSb | a | b | Λ

Example

S → aS | Sa | a

19 / 19

