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1. INTRODUCTION

Although intelligent interactive systems have been the focus of many research ef-
forts, only a few projects have addressed systems for individuals with disabilities.
ICICLE [Michaud and McCoy 2006] is an interactive system that identifies errors in
written English by students whose first language is American Sign Language, hypothe-
sizes the cause of those errors, and provides feedback to the students on writing correct
English. Several lines of research have led to improved methods of augmentative and
alternative communication for individuals with communicative impairments [Trnka
et al. 2009; Gips 1998; Alm et al. 1987; Waller et al. 1992, 2001; Newell et al. 1992;
MacAulay et al. 2002; Todman and Alm 2003; Black et al. 2010]. Other work, such as
that of Ferres [2010], provides access to information graphics (nonpictorial graphics
such as bar charts, line graphs, etc.) for individuals with sight impairments; however,
although bar charts are treated differently from line graphs, their system provides the
same information for each instance of a graph type (i.e., all summaries of line graphs
contain the same sorts of information). They do not involve reasoning about the content
of the graphic and thus do not rise to the level of an “intelligent” system.

We have developed an intelligent, interactive system (SIGHT) for providing individ-
uals with sight impairments with access to the content of information graphics from
popular media. SIGHT is interactive in that it provides the user with the ability to
request a summary of a graphic at a relevant point in a document and offers the oppor-
tunity to request follow-up information if desired. This summary is presented as text
in a dialog window which can then be read to the user with screenreader software or
read by the user with a screen magnifier tool. SIGHT exhibits intelligence in several
ways. These include:

—offering the user access to an information graphic at the point in the text that is most
relevant to the graphic;

—hypothesizing the high-level intended message conveyed by a bar chart or a line
graph by reasoning about communicative signals selected by the graph designer;

—using heuristics based on a corpus study to identify what is being measured on the
dependent axis (which often is not explicitly labelled) and to realize it as text;

—applying content identification rules based on human subject experiments to se-
lect propositions for inclusion in an initial summary of a graphic and subsequent
responses;

—applying metrics that take into account sentence complexity in aggregating proposi-
tions into sentences.

This article describes the interactivity of the SIGHT system and presents the method-
ology underlying its intelligent behavior. Section 2 motivates the need for access to
information graphics, the overall approach that we have taken, and discusses related
work on increasing the accessibility of graphics. Section 3 gives an overview of SIGHT’s
user interface and architecture, and Section 6 expands on this to present our method for
identifying where in a document to offer access to an information graphic rather than
merely where it is encountered when reading the document. Section 4 presents our
Bayesian system for hypothesizing the intended message of an information graphic;
we hypothesize that a graphic’s intended message should form the core of its initial
summary. Unfortunately, graphics often do not explicitly label the dependent axis with
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Fig. 1. A graphic from Businessweek.

what is being measured; Section 5 describes our methodology for identifying an ap-
propriate referent. Section 7 describes our approach for selecting additional salient
propositions to include in the initial summary, and Section 8 gives a brief overview of
how the selected propositions are structured into a coherent presentation. Section 9
describes our approach to providing further information about the graphic when the
initial summary did not satisfy the user’s needs. Section 10 presents our preliminary
evaluation studies which illustrate the success of the SIGHT system. Although we be-
lieve that our methodology is applicable to most types of graphs that appear in popular
media, the implementations presented in this article are limited to simple bar charts
and line graphs. We chose simple bar charts and line graphs since they are two very
different kinds of graphs (discrete versus continuous) and the messages conveyed by
these two kinds of graphs represent sufficient variability to demonstrate the efficacy
of our methodology. Our current work is addressing grouped bar charts [Burns et al.
2012], and in the future we will consider multiple line graphs, pie charts, and compos-
ite graphs comprised of more than one graph type. Throughout the article, we will use
examples from our implemented system to illustrate how SIGHT processes a document
and its information graphics and provides access to a graphic’s content.

2. MOTIVATION

Information graphics in popular media generally have a communicative goal or mes-
sage that they are intended to convey. For example, the graphic in Figure 1 ostensibly
is intended to convey that American Express ranks third in total credit card purchases
each year, and the graphic in Figure 2 is intended to convey that there has been a
changing trend in ocean levels (relatively stable from approximately 1900 to around
1930 and then rising from around 1930 to 2003). We contend that this intended mes-
sage captures the high-level content of the graphic and its primary contribution to the
multimodal document in which it appears.

In contrast with scientific documents which explicitly refer to and explain their
information graphics, the text of articles from popular media often do not capture the
content of their information graphics [Carberry et al. 2006]. Moreover, captions on
graphics often do not capture the graphic’s high-level content [Elzer et al. 2005a], as
shown by the graphs in Figures 1 and 2. Instead, the reader is expected to assimilate the
information graphics and integrate her communicative goals into the communicative
goals of the text in order to fully comprehend the document. Thus information graphics
in popular media cannot be ignored.

Our research has the goal of providing blind individuals with effective access to
documents containing information graphics in popular media. Instead of rendering the
graphic in an alternative medium (such as via sound, touch, or a detailed description
of what the graph looks like), our approach is to provide the user with the high-level
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Fig. 2. A graphic from USA Today.

content of the graphic along with an interactive facility for requesting follow-up
responses providing more detailed information about the graphic. Thus our system
addresses the needs of individuals who want just the high-level contribution of the
graphic to the article that they are reading as well as the needs of individuals who
want more in-depth knowledge about the graphic’s content.

The population of people who are blind or visually impaired is extremely diverse.
Differences stem from, among other things, severity and type of vision loss, age of onset
(from birth to elderly), underlying causes of vision loss, other disabilities the individual
may have, assistive technologies used (e.g., screenreaders, screen magnifiers), as well
as education and life experiences. The experiences with and ability to reason about
information graphics cannot be determined by any simple combination of these factors.
For instance, a person who becomes blind from an early age may have never seen an
information graphic, but may have been educated in science and learned to interpret
scientific graphics rendered with sounds or given in tactile representations. Such an
individual may have a very good grasp on how to interpret graphics (and the vocabulary
used to describe them).

In part to reach the widest population, the SIGHT system does not describe the
graphic using graphical terms (something that would not be helpful for someone who
has not worked with them), but rather focuses on the information content that the
author decided to render in graphical form. Though the system does identify an in-
formation graphic by type (e.g., bar chart, line graph), the textual description does
not require graphical reasoning ability or familiarity to interpret. As is mentioned in
Section 9, in some of our studies we found that people who were congenitally blind,
and without familiarity with information graphics, had no idea what additional infor-
mation could be gleaned from a graphic beyond the initial summary we provided. Thus
they did not know what kind of follow-up questions would be appropriate. This was a
major reason for making the follow-up question interface menu driven.

2.1. Related Work

In supporting the needs of individuals who are seeking just the high-level contribution
of the graphic to the article as well as those individuals who desire more in-depth
knowledge about the graphic’s content, our work can be viewed as an interesting variant
of some of the core problems in information visualization. In information visualization,
the issues of overview+detail and focus+context arise from the competing needs of
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the user and limited viewing area [Chen 2004; Cockburn et al. 2008]. The user might
want very detailed visual data, but still require high-level information in order to keep
the data in context [Chen 2004; Cockburn et al. 2008]. In information visualization,
the challenge is finding intuitive and novel ways to display the information so that
the viewing space is utilized as efficiently as possible. In our work, the challenge
is designing an intuitive interface that allows a sight-impaired user to obtain the
categories and levels of detail of information that she wants in appropriately sized
cognitive chunks.

A great deal of research has been concerned with providing people who are blind with
access to graphical information, with primary emphasis on scientific data exploration
graphs [Lewandowsky and Spence 1989]. The task has been to render the graphic for
“viewing” in an alternative modality (such as touch or sound) or to convey a depiction
of the graph (labels, values, caption, etc.) via speech. For instance, researchers have
investigated techniques for rendering visual information in either auditory (nonspeech
sounds or tones) [Meijer 1992; Flowers and Hauer 1995; Roth et al. 2002; Brown
and Brewster 2003; Alty and Rigas 2005; Cohen et al. 2005; McGookin and Brewster
2006] or haptic/tactile (raised dots or lines, force feedback devices) [Ina 1996; Fritz and
Barner 1999; Krufka and Barner 2006; Jayant et al. 2007; Goncu and Marriott 2008], or
a combination of these [Kennel 1996; Ramloll et al. 2000; Yu and Brewster 2002, 2003;
Yu et al. 2003; Goncu et al. 2010]. Visually important cues in images have been mapped
to appropriate tactile analogs [Nayak and Barner 2004; Way and Barner 1997a, 1997b].
These approaches represent a direct translation of visual information into an alternate
modality; they do not attempt to capture the meaning of the content. Kurze [1995]
uses text to convey the content of a graphic: in this case, a verbal description of the
diagram’s properties (e.g., the style of the diagram, the number of datasets, the labels,
ranges of axes). While such approaches are extremely valuable for graphics in scientific
articles, the interpretation of these graphs requires training [Walker and Nees 2005],
imposes a great cognitive load, may require special hardware and preparation of the
graphic itself, and the approaches fail to capture the intention of graphics in popular
media.

Some researchers have concentrated their efforts on communicative graphs and
providing access in text [Ferres et al. 2007, 2010] along with inexpensive hap-
tics [Abu Doush et al. 2009]. For example, the iGRAPH-Lite system [Ferres et al.
2007, 2010] is an interactive system designed specifically for graphics that appear in
Statistics Canada’s The Daily. In addition to a textual summary, iGRAPH-Lite allows
the user to access, via keyboard commands, the low-level values of the graphic. This
research does make different summaries on the basis of graph type. However, it does
not make distinctions between different communicative intentions. Thus, for example,
summaries of two different bar charts would include the same information even though
they might have very different underlying intentions.

These research efforts differ significantly from our approach, which uses reasoning
about the communicative signals in the graph to identify its intended message and
provide the user with a summary of the high-level knowledge conveyed by the graphic.
Thus our system exhibits a level of intelligent behavior that is absent from the other
systems.

3. SIGHT: AN INTERACTIVE SYSTEM FOR BLIND INDIVIDUALS

3.1. Interface Design

We have designed and implemented an interactive system called SIGHT for providing
blind individuals with effective access to the content of information graphics in popular
media. An important design consideration in implementing the SIGHT system was
to make the system work as seamlessly as possible within the existing computing
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environment of most visually impaired users, while allowing them to access the content
of information graphics available on the Web. Many visually impaired users utilize
screenreading software to interpret what is on the screen and send that content to
a speech synthesizer. The most commonly used screen reader worldwide is JAWS by
Freedom Scientific, running on Windows operating systems using the Internet Explorer
Web browser. Therefore, the SIGHT system has been implemented and tested on a
Windows 7 system using JAWS version 11 and Internet Explorer 8.

Just as sighted users develop particular habits in interacting with software, so do
visually impaired users. It was our intention in developing SIGHT to preserve users’
customary browsing habits as much as possible, since fewer changes in users’ habits will
result in their ability to learn the system more quickly, and they will be more receptive
to using the system on a regular basis. Research done by the American Foundation
for the Blind (AFB) [Gerber 2002] showed two basic patterns for sight-impaired users
when navigating Web pages: (1) scrollers would rather have the entire screen read to
them before choosing a navigational button or action, while (2) searchers like to find a
particular piece of information and then move on. As a screenreader, JAWS supports
both scrolling and searching as patterns of interacting with Web pages. Scrollers can
simply listen to the content of the Web page as JAWS interprets it, taking action when
they are ready. Searchers can use the TAB or arrow keys to navigate more quickly
through content, taking action as soon as they locate what they are looking for.

Ideally, if the developer of the Web page being accessed has supplied alternative text
(or “alt text”) for graphics in the html, a screenreader (such as JAWS) will read this
text to the user when the graphic comes into focus in the screenreader. However, the
vast majority of Web pages are developed without broad accessibility in mind, and alt
text is not supplied, thus making the content of the document’s graphics inaccessible
to a visually impaired user. SIGHT is designed to naturally supplement the processing
of alt text if it is present and to replace it if it is not. When a Web page is opened in
Internet Explorer, the SIGHT system performs a scan of all of the graphics on that
page, performing rudimentary image processing to determine if the image is likely to
contain an information graphic (currently, either a simple bar chart or a single-line line
graph). If an image appears to be an information graphic, the SIGHT system appends
a message to the existing alt text (if any) informing the user that CONTROL+Z can be
pressed to launch the SIGHT system in order to obtain information about the graphic’s
content. By inserting text into the alt text, the SIGHT system is working naturally
with the tools that are familiar to visually impaired users, and they will hear the alt
text when they encounter the information graphic.

When an information graphic is in focus for the user and CONTROL+Z1 has been
pressed, the SIGHT system begins processing the information graphic. A Visual Ex-
traction Module (VEM) analyzes the graphic and produces an XML representation
containing information about the components of the information graphic including the
graphic type (bar chart, line graph, etc.) and the caption of the graphic. For a bar chart,
the representation includes the number of bars in the graph, the labels of the axes, the
caption, and information for each bar such as the label, the height of the bar, the color
of the bar, and so forth. For a line graph, the representation includes the beginning and
end points of each straight line segment, the labels of the axes, any annotations on the
points in the line graph along with their location, the caption, and so forth. The XML
representation contains all the detail necessary to redraw the graphic. Although the
VEM must process a raw image, the task is much more constrained, and thus much
easier, than most image recognition problems. Currently, the VEM can handle elec-
tronic images of simple bar charts and line graphs that are clearly drawn in a fixed set

1This key combination was chosen so as not to conflict with existing navigation commands in JAWS.
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Fig. 3. Initial summary.

of fonts and with standard placement of labels and captions. Current work is removing
these limitations. This article will not be concerned further with the VEM.

When the system begins processing, a message will be presented in a dialog window
stating that processing has begun, so that the screenreader can read the message.
This immediate feedback is important to a visually impaired user as she has no other
way of knowing if she successfully activated processing of the information graphic. The
next feedback that the user will receive from the SIGHT system is an initial summary
containing the underlying message of the graphic. This will be conveyed via a new
window that will appear in the focus of the screenreader and be read by JAWS (e.g.,
the dialog window shown in Figure 3 for the graphic in Figure 1). The title of the
window will be the caption of the information graphic, the contents of the window
will be the summary. Although the content of all dialog windows will be read to the
user by JAWS, users who use a screen magnifier can read the system responses and
see the windows that are displayed. 16-point or larger fonts are used throughout the
SIGHT system so that the text is not overly distorted by magnification [Coyne and
Nielsen 2001]. All dialog windows in the system present a set of navigational menu
options, all of which are associated with unique keyboard accelerators2. For example,
there are three buttons in the initial summary dialog window: Main Menu, ReRead,
and Exit. The “ReRead” button (associated with “Shift+R” keystroke combination) is
an important element of the interface since the ability to repeat information when
it has not been properly heard the first time is critical for visually impaired users.
The Exit button (associated with “Shift+E” keystroke combination) allows the user to
exit the SIGHT system if the initial summary provided sufficient information about
the information graphic. The Main Menu button (associated with “Shift+M” keystroke
combination) provides the interface to the rest of the SIGHT system via a main follow-
up window (as shown in Figure 4). From that dialog window, the user can request
general, focused, or specific follow-up information to what she has already learned
about the information graphic. General Follow-up is a request for more knowledge
about the graphic without specifying any particular kind of knowledge (similar to
saying “Tell me more”), Focused Follow-up is a request for further information about
some particular aspect of the graphic such as its trends, and Specific Follow-up is a
request for detailed information about some entity in the graphic such as a particular
bar. Follow-up responses are discussed further in Section 9.

2Users who use a screenreader can tab to move through the menu options, and press the space bar or the
associated keyboard accelerator in order to select the active menu option. In such cases, the options would
be read to the user by JAWS. The menu options can also be activated by clicking its corresponding button;
this can be done by users with low vision who use screen magnifiers.
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Fig. 4. Main follow-up menu.

Fig. 5. Architecture of the SIGHT system.

3.2. System Architecture

Figure 5 presents an overview of the architecture of the SIGHT system. A Web
page is input to the User Interface which handles communication with the user. As
discussed in Section 3.1, the Web page is read to the user via JAWS screenreading
software. User requests, whether for an initial summary of an information graphic or
for follow-up information about the graphic, are sent to the Interaction Module which
is responsible for invoking the appropriate submodules. If the request is for an initial
summary of the graphic, the Interaction Module sends the electronic image of the
graphic to the Visual Extraction Module which produces an XML representation of the
graphic; this XML representation is sent to the Intended Message Recognition Module
(described in Sections 4 and 5) that infers the graphic’s intended message (which will
serve as the core of the initial summary) and returns it to the Interaction Module.
For both requests for initial summaries and requests for follow-up information, the
Interaction Module invokes the Generation Module which is responsible for identifying
the appropriate content of the response (Content Identification described in Sections 7
and 9.1), coherently structuring and organizing it (Text Structuring and Aggregation
and Sentence Ordering described in Section 8), and realizing it in natural language
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Fig. 6. Architecture of the Intended Message Recognition Module.

(Sentence Generation). The English language response is returned to the Interaction
Module which returns it along with available navigation options to the User Interface;
the User Interface then delivers the response to the user via speech.

4. RECOGNIZING AN INFORMATION GRAPHIC’S INTENDED MESSAGE

Information graphics in popular media generally have a communicative goal or in-
tended message. As argued by Clark [1996], language is more than utterances; it is
any action that is intended to convey a message, or lack of an action when one is ex-
pected. For example, pointing, a deliberate head nod, rolling of the eyes, or even failure
to respond to an invitation (known to have been received) each convey a message.
Thus, adopting Clark’s view that communication is not limited to verbal behavior, we
view an information graphic as a communicative action, and we exploit an information
graphic’s communicative signals, such as coloring one part of the graphic differently
from others, as evidence in a Bayesian network that hypothesizes the graphic’s intended
message. This intended message constitutes the most important high-level knowledge
that should be included in an initial summary of the graphic.

Figure 6 presents an overview of the Intended Message Recognition Module that is
part of the SIGHT architecture displayed in Figure 5. If the graph is a line graph,
it is first segmented into visually distinguishable trends (described in Section 4.2.1)
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Fig. 7. Two alternative graphs from the same data.4

and the XML representation is augmented to capture the segmentation. For both line
graphs and bar charts, a set of candidate intended messages are constructed (described
in Section 4.2) and evidence that may signal the intended message is extracted from
the graphic (described in Section 4.1). The candidate messages and extracted evidence
are used to build the Bayesian network (described in Section 4.3) that hypothesizes the
graphic’s intended message.

4.1. Communicative Signals in Information Graphics

We have identified several different kinds of communicative signals that can appear in
information graphics and serve as evidence of the communicative intention. These can
roughly be classified as perceptual task effort, salience devices, and message category
cues. We extract any such cues from an information graphic, and use their presence or
absence as evidence in a Bayesian network that hypothesizes the graphic’s intended
message.

AutoBrief [Green et al. 2004] is a system for intelligent multimedia generation. One
of their hypotheses was that a graphic designer attempts to design a graphic that best
enables the viewer to perform the perceptual and cognitive tasks necessary for iden-
tifying the graph’s intended message. Thus we hypothesize that the relative difficulty
of different perceptual tasks serves as a communicative signal about which tasks the
viewer was intended to perform. Consider, for example, the graphics in Figure 7. The
message conveyed by the graphic in Figure 7(a) (and in fact the message intended by
the authors of the report3) is that the salary of females is consistently less than that of
males for each of the science and engineering disciplines. The graphic in Figure 7(b)
depicts the same data, but the organization of the graphic does not facilitate an easy
comparison of male versus female salaries in each discipline. Thus it does not convey
the same high-level message as the graphic in Figure 7(a), although the same infor-
mation could be extracted from both graphics.5 As noted by Larkin and Simon [1987],
information graphics that are informationally equivalent (all of the information in
one graphic can also be inferred from the other) are not necessarily computationally
equivalent.

3We know the intended message since a colleague served on the NSF panel that prepared the report.
4The leftmost graphic appeared in the 2000 Report of the NSF Committee on Equal Opportunities in Science
and Engineering [NSF Committee on Equal Opportunities in Science and Engineering 2000].
5The intended message of the graph on the right side of Figure 7 might be that both male and female salaries
are lowest in the life and social sciences and highest in engineering.
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Fig. 8. Rule for estimating effort for the perceptual task PerceiveValue.
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Fig. 9. A bar chart from The Wilmington News Journal.

Thus we treat relative perceptual task effort as a communicative signal in bar charts;
since line graphs do not consist of discrete entities such as bars, perceptual effort does
not appear to play the same significant role in line graphs and thus is not consid-
ered there. For bar charts, we constructed a set of rules, represented as condition-
computation pairs, that estimate the perceptual task effort for different perceptual
tasks on bar charts. These rules are based on research by cognitive psychologists and
were validated with eye-tracking experiments. For example, the rule shown in Figure 8
estimates the perceptual effort required to obtain the exact value for an attribute in a
bar chart given that the user is already focused on the bar. Rule-B1 captures a situation
in which the bar is annotated with its value; the estimate is 150 units for discriminat-
ing the label (based on work by Lohse [1993]) and 300 units for recognizing a 6-letter
word (based on work by John and Newell [1990]). Rule-B2 captures the situation in
which there is no annotated value but the top of the bar is aligned with a label on
the y-axis. A separate rule captures the cognitive effort required if the viewer must
extrapolate between two labels on the y-axis. Elzer et al. [2006] provides details about
the rules and the eye-tracking experiments that validated them.

A second class of communicative signal is attention-getting devices that make an
entity salient in a graphic. These include a graph designer choosing to color a bar
differently from other bars in a bar chart, to annotate an entity in a graphic with its
value, or to include a referent to an entity in the graph’s caption. For example, the bar for
2001 is colored differently in the graphic in Figure 9, two of the points are annotated
in the graphic in Figure 10, and a referent to the bar labeled American Express is
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Fig. 10. A line graph from The Wilmington News Journal.

included in the caption for the graph in Figure 1. Such design decisions make the entity
salient and suggest that it plays a prominent role in the graphic’s intended message;
that is, as a parameter in the logical representation of the graphic’s message. The
XML representation produced by the Visual Extraction Module captures annotations,
coloring, captions, etc. Thus our system extracts from the XML representation of the
graph any salience signals present in the graphic.

A third class of communicative signal is cues in the caption that suggest a partic-
ular category of intended message. For example, the verb “declining” in the caption
of Figure 10 is such a cue; it might suggest a message about a declining trend or a
message about a changing trend where the change is from rising or stable to declining.
We identified a set of such cue verbs and organized them into semantic similarity cate-
gories [Elzer 2005]; for example, the verbs rise and soar reside in one category whereas
the verbs rebound and recover reside in a different category. The presence of a verb
in one of these categories in the caption (or a noun or adjective derived from one of
these verbs) is treated as a communicative signal. Our system uses a part-of-speech
tagger [TreTagger 1995] and a stemmer [Porter 2006] to extract message-cue signals
from the caption.

Each of these signals is treated independently and entered into a Bayesian network
(see Section 4.3) that hypothesizes the graphic’s intended message. We performed a
study on bar charts to assess the impact of each kind of communicative signal on rec-
ognizing the correct intended message [Carberry and Elzer 2007]. That study showed
that perceptual task effort was the communicative signal that most affected system
success. However, the study also showed that the evidence sources compensate for one
another: when one source of evidence is disabled, cues from other sources generally
provide evidence that often enables recognition of the intended message.

4.2. Constructing Candidate Intended Messages

In order to infer the message intended by an information graphic, we use a Bayesian
network. For each new graph, the Bayesian network must consider possible intended
messages and use the graphic’s communicative signals to arbitrate among the candi-
date messages. This requires that we construct candidate messages that the system
will arbitrate among. Research into graphic design [Tufte 1983] and our analysis has
shown that given a graph type (e.g., line graph, bar chart), only a limited number of
kinds of intended messages are possible. We analyzed a corpus of simple bar charts
and a corpus of line graphs and identified 12 categories of messages for bar charts
and 10 for line graphs. Both include categories such as Rising-trend and Change-trend.
However, the categories for bar charts include Rank (conveying the rank of an entity
represented by a bar) and Relative-difference (comparing the relative values of two
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entities represented by bars), whereas the categories for line graphs include Big-jump
representing a sudden sharp change in value of an entity and Change-trend-return
representing a trend that reverses and then returns to the original trend. The full set
of categories can be found in Elzer [2005] and Wu et al. [2010b].

A candidate intended message is constructed by instantiating the parameters of
a message category with entities from the graphic. Conceptually, this is relatively
straightforward for a bar chart. However, since line graphs do not consist of discrete
entities but are instead a continuous set of connected points, we first abstract a line
graph into a set of discrete entities (namely, visually distinguishable trends) from which
the candidate messages can be constructed).

4.2.1. Abstracting a Line Graph into Visually Distinguishable Trends. Many line graphs, such
as the one in Figure 2, consist of many short rises and falls, but a viewer summarizing
it would be likely to regard it as consisting of a short overall stable trend from around
1900 to approximately 1930, followed by a long rising trend (both with high variance).
As observed by Zacks and Tversky [1999], this tendency to associate lines with trends
exists in part because of cognitive naturalness6 and in part because of ease of perceptual
processing. In fact, the cognitive “fit” of the line graph for representing trends is upheld
by multiple findings from the basic Gestalt principles to the Wickens and Carswells’
Proximity Compatibility Principle (grouping objects that are meant to be processed to-
gether) [Wickens and Carswell 1995] to Pinker’s model of graph comprehension [Pinker
1990]. Thus, rather than working with the raw line graph, we developed a Graph Seg-
mentation Module that divides a line graph into a sequence of visually distinguishable
trends from which candidate intended messages can be constructed.

The Graph Segmentation Module applies a top-down recursive decision process.
Starting with the initial line graph as a single segment, it applies a learned model to
make a decision about whether the segment represents a single visually distinguishable
trend or whether it should be split into two subsegments. In the latter case, the segment
is split at the point that is furthest from a straight line connecting the end points of
the segment and then the decision process is applied to each of the subsegments.

The model that makes the split/no-split decision on a segment was learned using a
support vector machine [Tan et al. 2005] that considered 18 attributes [Wu et al. 2010a].
Many of the attributes represent the result of statistical tests that estimate how well
the segment represents a linear regression of the sampled points in the segment. The
following are two such attributes.

—Attribute: Correlation Coefficient. This attribute is the absolute value of the Pearson
product-moment correlation coefficient [Rodgers and Nicewander 1988]; it measures
the tendency of the dependent variable to have a linearly rising or falling relationship
with the independent variable. It is computed as the covariance of the X, Y values
divided by the product of their standard deviation. The closer the absolute value of
the correlation coefficient is to 1, the more the points represent a linear increasing
or decreasing relationship. We hypothesized that the correlation coefficient might be
helpful in determining whether a long set of short jagged segments, such as those
between 1930 and the end of the graph in Figure 2, should be captured as a single
rising trend and thus not be split further.

—Attributes: Runs Test. Five attributes are based on the Runs Test [Bradley et al. 1995].
A run is a sequence of consecutive sampled points that all fall above the regression
line or all fall below the regression line. The number of runs is then compared with
an estimate of the expected number of runs Rmean and its standard deviation RSD; if

6The term cognitive naturalness was coined by Zacks and Tversky [1999]; it means requiring less mental
work.
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the actual number of runs exceeds (Rmean − RSD), then the Runs Test suggests that a
least squares linear regression is a good fit for the data points and that the segment
should not be split. We hypothesize that the Runs Test might be helpful when a
segment consists of more than two trends. Five attributes are based on the Runs
Test, including the result of the Runs Test (a binary value) and the actual number of
runs R.

In contrast with other segmentation algorithms, we also include global attributes
that consider the segment in the context of the overall line graph. The following is such
an attribute.

—Attribute: Proportion. This attribute measures the fraction of the entire line graph
represented by this segment. We hypothesize that segments that comprise a large
portion of the graph are more likely to consist of visually distinguishable subseg-
ments and thus should be split.

To evaluate our Graph Segmentation Module, we applied it to a corpus of 234 line
graphs. Seven human evaluators were given the segmentations produced by the Graph
Segmentation Module for each of the 234 line graphs, intermixed with bad segmen-
tations for 20 additional graphs; the evaluators were not told that the set included
intentionally bad segmentations. The evaluators were asked to rate each segmenta-
tion according to how well it captured the visually distinguishable trends in the graphic,
using a scale from 1 to 5: 5 = ideal, 4 = very good, 3 = acceptable, 2 = poor, 1 = terrible.
To assess the degree of agreement among the seven evaluators, we computed the Fleiss
kappa statistic [Fleiss 1971] which is used in place of the Cohen kappa statistic [Cohen
1960] when the number of raters is greater than 2; the kappa statistic attempts to mea-
sure the degree of interrater agreement while discounting for the likelihood of chance
agreement. The Fleiss’ kappa statistic is 0.418 for the set of 254 line graphs which
is regarded as moderate agreement. Another statistic that can be used for assessing
degree of agreement among more than two raters is Kendall’s coefficient of concordance
W [Kendall and Babington-Smith 1939; Daniel 1989]; this statistic is more appropriate
for rating tasks than the kappa statistic since scores of 4 and 5 are regarded as much
closer to agreement than scores of 4 and 1. The W value (taking into account ties in
the ratings) for our 7 evaluators is .607 showing that there is a positive correlation of
agreement among the raters.

The average rating for the segmentations produced by our system was 4.25 with a
.55 standard deviation, showing that the performance of our model is between very
good and ideal. The average rating for the bad segmentations that were added to the
corpus was 1.57 with a standard deviation of .44, which was between poor and ter-
rible. To determine whether the judge’s ratings for the system’s segmentations were
significantly better than their ratings for the poor segmentations that were deliber-
ately added to the evaluation set, we applied Welch’s t-test which is appropriate for
two samples having unequal variances. The results given in Table I indicate that the
difference between the two sets of ratings were significantly different for all judges at
the .001 level. These results show that our Graph Segmentation Module is successful
at dividing a line graph into visually distinguishable trends.

As an example of the Graph Segmentation Module, consider the results shown in
Figure 11 for the graph in Figure 2. The original line graph is split into two visually
distinguishable trends, one from the beginning of the graph to around 1930 and the
second from around 1930 to 2003. The split points are depicted by circles in Figure 11;
the visually distinguishable trends are located between each pair of adjacent splitting
points and are represented by dashed regression lines.
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Table I. Results of Welch’s t-Test

Evaluator t value significance level
Judge-1: 22.69 .001
Judge-2: 4.87 .001
Judge-3: 18.89 .001
Judge-4: 14.39 .001
Judge-5: 14.61 .001
Judge-6: 11.10 .001
Judge-7: 27.80 .001

Fig. 11. Segmentation result for the graphic in Figure 2. Regression lines representing the visually distin-
guishable trends are shown as dashed lines; the split points for segmenting the line graph are shown as
circles.

4.2.2. The Suggestion Module. A Suggestion Module is responsible for constructing a set
of candidate intended messages. Each of the identified message categories has a set
of parameters which can be instantiated with the label of a bar in a bar chart or the
x-value of a point on a line graph to produce candidate intended messages.

Since the Graph Segmentation Module abstracts a line graph into a sequence of visu-
ally distinguishable trends, the Suggestion Module uses this sequence to construct a set
containing every possible instantiation of the message categories for line graphs. For
example, the category Change-trend-return captures messages that convey a change
over a sequence of three trends, where the direction (rising, falling, or stable) of the
second trend is different from that of the first trend and the third trend has the same
direction as the first trend, that is, the third trend resumes the direction of the first
trend. Thus the Change-trend-return category takes four values as parameters: the
x-value of the starting points of each of the three trends and the x-value of the ending
point of the third trend. So for every sequence of three visually distinguishable trends
produced by the Graph Segmentation Module where the signs of the slopes of the first
and third trends are the same and the sign of the slope of the middle trend is different,
an instantiated candidate Change-trend-return message is produced.

Due to memory and processing limitations, it was not possible to consider all possible
instantiations of the message categories for bar charts. For example, if a bar chart
contained 10 bars, just considering every possible instantiation of the message category
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Fig. 12. Top level of the Bayesian network for bar charts.

Relative-difference would produce 45 candidate messages, one for each pair of bars.7
As noted in Section 4.1, the relative effort required for a perceptual task serves as a
signal about whether the viewer was intended to perform that task, and the graph
designer uses attention-getting devices to make certain entities salient in the graph.
Thus we use relative perceptual effort and salience as heuristics to limit the number of
candidate intended messages for bar charts. The 10 perceptual tasks that represent the
least effort for the bar chart are identified, along with every perceptual task involving
a salient entity in the bar chart; each instantiation of a message category that requires
performing one of these perceptual tasks is included as a candidate message.

4.3. Reasoning with a Bayesian Network

A Bayesian network is used to determine the intended message of a graphic. The
conditional probability tables for the Bayesian network are learned from a training
corpus of graphics. Given a new graphic, a Bayesian network is dynamically built as
described shortly, based on the candidate messages that were discussed in Section 4.2.
Once the evidence from the extracted communicative signals has been entered into the
network and the probabilities propagated through the network, the candidate message
with the largest probability is selected as the system’s hypothesis about the graphic’s
intended message.

The structure of the network facilitates the necessary reasoning. The top-level node
of the network represents the set of message categories; the values in this node are the
twelve message categories, as shown in Figure 12 for simple bar charts. Each of these
categories then appears as a child of the top-level node.8 The children of each message
category node are the set of instantiated candidate messages in that category. For bar
charts, the network is further expanded to include its requisite perceptual tasks as
children.

A Bayesian network requires evidence in order to hypothesize the intended message
for the graphic. Perceptual task effort is a clue about whether a specific perceptual task
was intended by the graph designer; thus relative perceptual task effort (low, medium,
high) as computed by the rules described in Section 4.1 is inserted as evidence beneath
each perceptual task node. Salience is a clue about whether a specific entity was
intended to play a significant role in the intended message; that is, whether the entity
is a parameter in the intended message. Thus the presence or absence of each kind

7As discussed in Section 4.3, we use a Bayesian network to arbitrate among the candidate intended messages.
Memory problems are caused not only by the number of nodes in the network but also the size of the
conditional probability tables resulting from inhibitory links between exclusive alternatives in the network.
8This additional level does not affect the inference process or the computation of the probabilities in the
network. Its presence merely simplifies the conditional probability tables in the network by limiting the
size of the tables that would typically occur just below the top-level node; those tables now only need to
contain the InPlan and NotInPlan probabilities of their parent node, rather than the InPlan and NotInPlan
probabilities for all the values of the top-level node.
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Fig. 13. Possible instantiations of Get-Rank.

of attention-getting device for the parameters (coloring, annotation, mention in the
caption, etc.) is attached as evidence beneath an instantiated candidate message. On
the other hand, whether or not a word from one of the verb categories appears in the
caption serves as evidence about the general category of intended message and thus
appears as a child of the top-level node in the network.

Figure 12 shows the top level of the Bayesian network for bar charts, with the
verb and adjective evidence nodes attached to the top-level IntendedMessage node.
Beneath this are nodes for each of the possible message categories. The rest of the
Bayesian network is built dynamically for each new graphic. For example, if there
were three instantiated candidate messages for the Get-Rank message category, then
the Get-Rank message category node would have three children as shown in Figure 13;
the dashed lines are inhibitory links enforcing mutual exclusivity among the three
instantiated candidate messages. Figure 14 displays the subnetwork for one of these
candidate messages, namely Get-Rank(BAR1). It captures the fact that one could get
the rank of a bar in one of two ways: (1) by perceptually noticing the bar and then
perceiving its rank or (2) by finding the label of the desired bar and then perceiving
that bar’s rank. Their children capture tasks that must be performed to get a bar’s rank
in one of these two ways. The children of the leaf nodes in Figure 14 are evidence nodes
capturing the communicative signals that serve as evidence for whether the primitive
perceptual task represented in the leaf node is part of recognizing the graphic’s
intended message. Figure 15 displays the evidence nodes for the Perceive-Rank(BAR1)
primitive perceptual task. Each node in the Bayesian network has a conditional
probability table capturing the probability of each of the node’s values given the
values of its parent nodes; these are the probability tables that were learned from the
training corpus. Further explanation of the structure of the Bayesian networks for bar
charts and for line graphs is given in Elzer et al. [2005b] and Wu [2012] respectively.

4.4. Evaluation and Examples

Our system for recognizing the intended message of an information graphic was tested
on a corpus of 110 bar charts and 240 line graphs collected from various popular
media such as Newsweek, Business Week, USA Today, and local newspapers. Each of
the graphics was annotated with its intended message by two human coders using
consensus-based annotation [Ang et al. 2002], in which the coders independently iden-
tified the intended message for each graphic but then discussed graphics where their
annotations differed in order to come to agreement as to its intention.

Using leave-one-out cross-validation in which one graph served as the test graph and
the other bar charts or line graphs were used to compute the conditional probability ta-
bles for the network, our system’s accuracy in recognizing the correct intended message
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Fig. 14. Get-Rank(BAR1) subnetwork.
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Fig. 15. Perceptual task node with evidence nodes.

(both message category and instantiated parameters) for bar charts was 79.1% and for
line graphs was 72.08%. The 95% confidence interval [Witten and Eibe Frank 2011] for
bar charts is (70.6%, 85.7%) and for line graphs is (66.1%, 77.4%). The lower success
rate for line graphs is partially due to the fact that errors from the Graph Segmenta-
tion Module propagate into the parameters of the candidate messages produced by the
Suggestion Module and thus the Bayesian network. For example, on our test set of 240
line graphs, the correct segmentations are produced for only 215 of them. Thus a soft
upper bound9 on the success rate of the overall message recognition system is 89.5%
for the test set. For the purposes of the SIGHT system, it is important to note that even
if the message recognized by our Bayesian network does not match the intended mes-
sage identified by the human annotators, the message recognized by our system still
contains information conveyed by the graphic. For example, if the system hypothesizes
a Change-trend message when the intended message is really a Change-trend-return,
the data captured by the graphic will include a changing trend; but the system has
failed to correctly identify the overall message that the graphic is intended to convey.

As examples of the messages recognized by our system, consider the bar chart in
Figure 1 and the line graph in Figure 2. Our system correctly recognizes the intended
messages of these graphics, namely that American Express ranks third in terms of
total credit card purchases each year (the logical representation is Rank(American

9If the Graph Segmentation Module produces an incorrect segmentation, it is possible that the correct
intended messsage could still be identified if the segments denoting the parameters of that message were
correctly represented in the incorrect overall segmentation.
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Fig. 16. A bar chart with no salient entities.
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Fig. 17. A bar chart with two salient entities.

Express, 3)) and that there is a changing trend in annual difference from Seattle’s
1899 sea level (the logical representation is Change-trend(1901, stable, 1928, rise,
2003))10 respectively.

To see the impact of varying evidence in the graphic, consider the two graphs in
Figures 16 and 17. Our system hypothesizes a Rank-all intended message for the
graphic in Figure 16; namely, that it is intended to convey the relative rank of the
various countries depicted in the graphic. However, the bars for the U.S. and Japan
are both salient in the graphic in Figure 17, with the bar for the U.S. more salient
since it is both colored differently and annotated with its value. These communicative
signals suggest that both bars play a prominent role as parameters in the graphic’s
intended message, and our system hypothesizes the intended message to be the relative
difference between the GDP of the U.S. and Japan, whose logical representation is
Relative-difference(U.S., Japan).

4.5. System Limitations

The most significant factors that impact the system’s success in recognizing a graphic’s
intended message are the quality of the representation produced by the Visual Extrac-
tion Module and the accuracy of the segmentation of a line graph into visually dis-
tinguishable trends. Currently, SIGHT works with electronic documents whose graph-
ics are clearly drawn and represented as .gif files, have standard representations of
graphical elements, and are in a fixed set of fonts. Thus graphics that have nonstan-
dard representations (such as using icons for bars) cannot be handled. In addition, as
noted in Section 4.2.2, memory limitations prevent the system from considering all
possible instantiations of the message categories for bar charts. Thus occasionally the
correct intended message for a bar chart might not be among the candidate messages
constructed by the Suggestion Module and consequently the system cannot recognize
it as the graphic’s intended message. The successful extraction of evidence also affects

10Interpolation is used to produce the exact x-values for the points on the graph identified as split points.
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Fig. 18. A composite graphic from Newsweek.11

Fig. 19. A graphic from USA Today.

system performance, but to a lesser extent. For example, we use a part-of-speech tagger
and parser to identify helpful verbs in the caption and nouns that match labels in the
graphic. If a helpful noun or verb is not extracted, less evidence is available for iden-
tifying the intended message. This is exacerbated when labels do not exactly match
nouns in the caption, such as a label that says USA and a caption that says United
States. These are all issues that must be addressed in future work.

5. IDENTIFYING THE MEASUREMENT AXIS DESCRIPTOR

The preceding logical representations of the intended message do not yet capture what
is being measured in the graph, such as total credit card purchases each year for the
bar chart in Figure 1. Unfortunately, many information graphics do not explicitly label
the dependent axis with what is being measured in the graph. For example, the line
graph in Figure 2 shows a changing trend in annual difference from Seattle’s 1899
sea level, the bar chart in Figure 18 shows a rising trend in Yahoo’s registered users,
and the bar chart in Figure 19 conveys that tennis ranks first in terms of number of
nominees for the 2003 Laureus World Sports Awards; yet none of these information
graphics has its y-axis labeled with this referent. Thus it was necessary to identify a
referent for what is being measured on the y-axis, what we refer to as the measurement
axis descriptor.

11This figure displays two of the five individual graphs comprising the composite graphic that appeared in
Newsweek.
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We analyzed a large corpus of bar charts whose measurement axis descriptor was
identified by two human annotators. We observed that:

—the measurement axis descriptor consists of a core noun phrase or wh-phrase ap-
pearing in the graphic’s text, possibly augmented with words appearing elsewhere.
For example, for the bar chart in Figure 18, registered users is the core of the mea-
surement axis descriptor “Yahoo’s registered users”.

—the textual elements of the graphic form a hierarchy based on placement in the
graphic, and the core of the measurement axis descriptor typically appears in the
lowest text element present in the graphic that is not solely a unit or scale indicator.
Moreover, if the text element contains multiple sentences or sentence fragments, the
core of the measurement axis descriptor typically appears near the end of the textual
element.

—certain cues can be identified that indicate the core of the measurement axis descrip-
tor. For example, if a sentence at a text level begins with a “Here is” or “Here are”
cue phrase, the core typically follows as a noun phrase or the object of a prepositional
phrase. Similarly, if a fragment at a text level consists solely of a noun phrase that
is not a proper noun, that noun phrase is typically the core of the measurement axis
descriptor. This latter observation accounts for the core of the measurement axis
descriptor for the bar chart in Figure 18.

Motivated by this corpus analysis, we developed a set of heuristics12 that construct
a measurement axis descriptor by melding together words and phrases extracted from
the text that appears in the graphic. We organized the textual elements of the graphic
into a hierarchy from lowest to highest.

(1) Dependent Axis Label: This is any text explicitly labeling the dependent axis.
(2) Text In Graphic: This is any text appearing within the graphic itself, such as the

phrase “total credit card purchases per year” that appears within the graph in
Figure 1.

(3) Description: This is any text appearing beneath the main caption of the graphic,
such as the several sentences underneath the caption “Ocean levels rising” in
Figure 2.

(4) Caption: This is the text comprising the lead caption on the graphic, such as
“Ocean levels rising” in Figure 2.

(5) Overall Description: This is the text appearing beneath the main caption of a
composite graph that contains several individual graphs, such as the two sentences
beneath the caption “Tallying up the hits” on the composite graph in Figure 18.

(6) Overall Caption: This is the text comprising the lead caption on a composite graph,
such as “Tallying up the hits” in Figure 18.

We constructed an ordered set of heuristics that were applied first to the lowest-level
text element in the hierarchy and then in turn to higher elements of the hierarchy
until a core was identified.13 The following are three sample heuristics.

—If the current sentence at the text level begins with a “Here is” or “Here are” cue
phrase, the core is the object of the prepositional phrase (if any) following the cue
phrase; otherwise, the core is the noun phrase following the cue phrase.

—If a fragment at a text level consists solely of a noun phrase that is not a proper
noun, that noun phrase is the core.

12Our corpus analysis was limited to graphics from articles written in American English and thus our
heuristics are not necessarily applicable to graphics from articles in other languages.
13If a text level contained multiple sentences and sentence fragments, the ones at the end were examined
first.
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—If the text element is a sentence, the noun phrase preceding the verb phrase in the
sentence is the core.

Postprocessing then revises or augments the core to get the complete measurement
axis descriptor. If the core has a modifier (such as rising or changing) that matches an
intended message category, that adjective is removed since it relates to the intended
message, not what is being measured on the dependent axis. For example, the core for
the graphic in Figure 10 is initially “Declining Durango sales” which is reduced to
“Durango sales”. If the extracted core was a complex noun phrase whose head matches
the ontological category of the labels, the head should not be part of the core since it
describes the independent axis, not the dependent axis. This is the case for “sports
that have had the most nominees” which would be the extracted core for the bar chart
in Figure 19. Thus in such cases, the nouns and subsequent prepositional phrases
in the modifier are collected as the core; for the bar chart in Figure 19, this would
produce “nominees” as the new core. Several augmentation rules are then applied to
augment the core with other text extracted from the graphic. One such augmentation
rule specializes a noun phrase as follows.

—If (1) there is only one proper noun at the same level and all text levels higher in the
hierarchy than the text level from which the core was extracted or (2) the Caption
or Overall Caption contains only one proper noun, then the possessive form of that
proper noun is appended to the front of the core as long as the proper noun is not
a label on the independent axis of the graph. Thus for the bar charts in Figures 18
and 19, the measurement axis descriptors become respectively “Yahoo’s registered
users” and “Laureus World Sports’s nominees”.

Finally the unit of measurement is added if it is not already part of the identified de-
scriptor. Thus the final measurement axis descriptors for the graphs in Figures 18, 19,
and 2 are “the number of Yahoo’s registered users”, “the number of Laureus World
Sports’s nominees”, and “annual difference from seattle’s 1899 sea level, in inches”.
The full set of heuristics and postprocessing rules can be found in Demir [2010].

An evaluation of the methodology was conducted on a new corpus of 205 randomly
selected bar charts from 21 different newspapers and magazines.14 Two human evalua-
tors rated the identified measurement axis descriptor on a scale from 5 to 1: 5 (excellent
text), 4 (very good, interpreted as understandable but awkward), 3 (good, contains the
right information but is hard to understand), 2 (poor, missing important information),
1 (very bad). They also evaluated three baselines which used respectively the text
appearing as the Dependent Axis Label, the Text In Graphic, and the Caption. The
kappa statistic for interrater agreement was .79 for the measurement axis descriptors
produced by the system, which represents substantial agreement. The kappa statistics
for the baselines were respectively .89, .92, and .91. These kappa statistics appear un-
usually high. However, the measurement axis descriptors produced by the system were
generally either perfect or very bad, making the ratings of the evaluators the same.
Agreement was even greater for the baselines; this is accounted for by the fact that
the descriptors provided by the baselines were overwhelmingly terrible or nonexistant
(both leading to a score of 1). For example, consider the graphic in Figure 19. The
graphic does not have a dependent axis label or any text in graphic; thus if it were part
of the test set, it would have received a score of 1 for both of the first two baselines.
Similarly, for the baseline that uses the caption, it would have received a score of 1

14Although we use the same methodology for identifying the measurement axis descriptor for line graphs,
we have not yet evaluated it for line graphs.
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from both evaluators since “Tennis players top nominees” is nowhere near the desired
measurement axis descriptor of “the number of Laureus World Sports nominees”.

If the evaluators differed in their ratings for a graphic, the lower rating was
recorded for the measurement axis descriptors produced by the system and the higher
rating was recorded for the baselines. The evaluation score for the measurement axis
descriptors produced by the system was 3.574 which is midway between good and very
good. This score was far better than the scores (1.475, 1.757, and 1.876) for the three
baselines and a Welch’s t-test shows that the difference between the system’s ratings
and the ratings for the three baselines is significant at the .001 level.

6. COHERENT INCLUSION OF INFORMATION GRAPHICS

Our system uses JAWS screenreading software to read the text of the article to a user
and prompt the user about the presence of an information graphic; it then accepts re-
quests for access to the graphic’s content. Unfortunately, in popular media, information
graphics often don’t appear adjacent to paragraphs to which they are related. And un-
like scientific articles where the information graphic will be referred to explicitly, such
as “As shown in Figure 1,” articles in popular media generally lack explicit references
to their information graphics. These two characteristics of popular media mean that
geographical location in the article and explicit references to a graphic cannot be relied
upon to determine where the content of an information graphic most coherently fits
into the article text. While determining the best place in the reading of a document
to render an information graphic requires input from people with visual impairments,
this study cannot be carried out unless the system can identify the paragraph most
relevant to the graphic (since presumably one might want to render the graphic either
before or after this most relevant paragraph and it thus must be one of the available
options in the study). Thus, the SIGHT system took on the problem of identifying the
portion of text that is most relevant to an information graphic, specifically a line graph.

6.1. Methodology: P-KL and P-KLE

We developed a basic method P-KL for identifying the paragraph most relevant to a
line graph, based on Kullback-Leibler divergence (referred to as KL-divergence), and
then augmented it to produce a more sophisticated method P-KLE. KL-divergence is
widely used in statistics and natural language processing to measure the asymmetric
distance of two probabilistic distributions or models. It can be expressed as

DKL(p||q) =
∑
i∈V

p(i)log
p(i)
q(i)

, (1)

where i is the index of a word in vocabulary V , and p(i) and q(i) are the probabilities
of word i in two distributions of words. Intuitively, document (paragraph) p is less
divergent from document q if the words in pappear in about the same relative frequency
as they do in q. Liu and Croft [2002] applied KL divergence on passages to improve
the accuracy of document retrieval. For our task, p is a smoothed word distribution15

built from a combination of three of the graph’s textual components (see Section 5):
Caption which is the main title for the information graphic, Description which is any
additional text that elaborates on the caption (such as the sentences in Figure 2 that lie
immediately beneath the caption Ocean levels rising), and Text In Graphic which is any
text appearing inside the graphic area. q is another smoothed word distribution built

15Smoothing substitutes small pseudocounts for words with no occurrences in order to address a sparse data
problem.
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from a paragraph in the multimodal document. We rank the paragraphs by their KL
divergence scores from lowest to highest, since lower scores indicate a higher similarity.

The basic method only considers the textual components associated with the infor-
mation graphic. But an information graphic consists of two parts: the textual part and
the graphic part. The textual part of the graphic generally has a lot of words having to
do with the domain of the graphic. In contrast, one can talk about the graphic part of
an information graphic in a very domain-independent way. For example, the graphic
may present trends (rises or falls), results (higher or lower), or (in the case of bar
charts) ranks or comparisons. We would like our system to be able to recognize words
such as these as being about a graphic. Thus we decided to explore whether we could
automatically extract a set of expansion words that are commonly used in paragraphs
that are relevant to information graphics and thus serve as signals that the paragraph
is related to a graphic. Method P-KLE would then augment the textual component of
a graphic with these expansion words before applying KL divergence to identify the
most relevant paragraph.

To construct this word set, we apply an iterative process on a training set of 395 line
graphs with full articles from multiple national sources such as USA Today, Business-
week, NewsWeek, New York Times, and Wall Street Journal and some local sources such
as The Wilmington News Journal. First, for each graphic in our training set, we use KL
divergence to identify m pseudo-relevant paragraphs in the document. This is similar
to the pseudo-relevance feedback technology used in information retrieval [Zhai 2008],
except that the information retrieval process considers a single query whereas we are
using a set of graphics and associated documents to identify an expansion set that can
be applied to all line graphs. If there are N line graphs, we produce a set of at most
m · N relevant paragraphs. In our experiment, we arbitrarily chose m = 3.

The next step is to extract a common word set from the set of pseudo-relevant para-
graphs. We assume that the collection of pseudo-relevant paragraphs was generated by
two models, one producing words relevant to the information graphics and one produc-
ing words relevant to the topics of the documents. Let Wg represent the word frequency
vector that generates words relevant to the information graphics, Wa represent the
word frequency vector that generates words relevant to the domains of the articles,
and Wp represent the word frequency vector of the pseudo-relevant paragraphs. We
can compute Wp from the pseudo-relevant paragraphs, and we can estimate Wa as the
word frequency vector for the entire set of articles. We want to compute Wg by filtering
the components of Wa from Wp. The problem can be formulated making the following
assumptions.

(1) Wp = αWa+βWg where α > 0 and β > 0, which means the word frequency vector for
the pseudo-relevant paragraphs is a linear combination of the background (topics)
word frequency vector and the graphic word vector.

(2) <Wa, Wg> = 0 which means the background word vector is orthogonal to the
graph description word vector. Here we assume that the vast majority of the article
concerns the domain of the article and the graphics words are primarily restricted
to discussion of the graphics, a very small portion of the article. Thus Wa will be
completely dominated by the domain information and thus we can consider that
the graphic word vector is independent of the background word vector and these
two share minimal information. Since we use a vector space model to represent Wa
and Wg, orthogonality is obtained by assuming that these two word vectors have
minimum similarity.

(3) Wg is assumed to be a unit vector. Whether or not Wg is a unit vector is immate-
rial for our method, since we are interested only in the relative rank of the word
frequencies, not their actual values. However, assuming that Wg is a unit vector
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gives us three equations in three unknowns (Wg, α, and β) which can be solved for
Wg.

With these three assumptions, we obtain the following results.

α = <Wp, Wa>

<Wa, Wa>
(2)

Wg = normalized
(

Wp − <Wp, Wa>

<Wa, Wa>
Wa

)
(3)

After we compute Wg, we use WordNet to filter out words whose dominant sense is
neither verb nor adjective, under the assumption that nouns will be relevant to the
domains or topics of the graphs (and are thus noise) whereas we want a general set
of words (such as “increasing”) that are typically used when writing about the data in
graphs. To roughly estimate whether a word is predominantly a verb or adjective, we
determine whether there are more verb and adjective senses of the word in Wordnet
than there are senses that are nouns. We rank the words in the filtered Wg by their
frequency and select the k (we chose k = 25 in our experiments) most frequent words
as our candidate expansion word list.

Since the textual components were used to identify pseudo-relevant paragraphs
and then pseudo-relevant paragraphs (as opposed to truly relevant paragraphs) were
used to construct the candidate word list for expanding the textual components, the
accuracy of both the pseudo-relevant paragraphs and the candidate expansion word list
is suspect. Thus we apply the two steps (identify pseudo-relevant paragraphs and then
extract a word list for expanding the textual components) iteratively until convergence
or minimal changes between iterations.

Thus far, we have the textual component of the graphic and a set of domain-
independent expansion words to use in identifying paragraphs that are relevant to
an information graphic. One piece of textual information not taken from the graphic is
the labels in the axes that correspond to points in the graphic because these are gener-
ally too numerous or cover too wide a span to be targeted specifically to a discussion of
the graphic. However, some of these points may be stressed by the graphic and thus be
very important to its description. These are points relevant to the intended message.
Therefore, we also augment the textual component with the parameters of the graphic’s
intended message that match points on the x-axis. For example, the logical representa-
tion of the intended message recognized by our system for the line graph in Figure 2 is
Change-trend(1901, stable, 1928, rise, 2003) which means that the line graph conveys
a changing trend in ocean levels over the period from 1901 to 2003 with the change
from relatively stable to rising occurring around 1928; the parameters 1901, 1928, and
2003 are added to the textual component.

Thus our second method, P-KLE, applies KL divergence to the textual component,
augmented with both the expansion word list and the parameters of the intended mes-
sage, to rank relevant paragraphs from an article. Because the textual component may
be even shorter than the expansion word list, we don’t add a word from the expansion
word list to the textual component unless the compared paragraph also contains this
word; otherwise the impact of the words originally in the textual component will be
severely diluted.

Using the most relevant paragraph in a presentation must be evaluated with people
with visual impairments. However, in the current implementation, when a line graph
is encountered, SIGHT uses method P-KLE to identify the paragraph in an article that
is most relevant to an information graphic and prompts the user about the presence
of that graphic at the end of reading the paragraph. Thus SIGHT exhibits intelligent
behavior by attempting to integrate a graphic coherently into the article rather than
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Table II. Success Rates for Baseline Method and Methods P-KL and P-KLE

geographically
closest

P-KL significance level
over
geographically
closest

P-KLE significance level
over P-KL

TOP 0.25 0.45 0.001 0.57 0.01
COVERED 0.37 0.62 0.001 0.67 not significant

merely providing access to the graphic at the point it appears in the document. SIGHT
is being extended so that identification of the most relevant paragraph is also done
for bar charts. The primary task is the construction of the set of expansion words that
commonly appear in paragraphs relevant to bar charts. This set is likely to be different
from words relevant to line graphs. For example, we anticipate that the set will include
words such as rank since bar charts often convey the rank of several entities with
respect to a particular criterion (such as the rank of airlines with respect to revenue).

6.2. Evaluation

To evaluate our methods for identifying paragraphs relevant to a line graph, we used
a test set of 100 line graphs and articles (all different from the training set used to
construct the expansion word list). Two human evaluators identified paragraphs in
each document that were relevant to its constituent line graph and ranked them in
terms of relevance. On average, Evaluator-1 selected 1.99 paragraphs and Evaluator-2
selected 1.67 paragraphs. For 66% of the graphs, the two evaluators agreed on the top
ranked paragraph with a kappa statistic of .62416 ; this shows that in many cases, the
most relevant paragraph is not obvious and that several possibilities exist.

The point of the method is to identify the most relevant paragraph as a logical place to
insert a description of the graphic. Therefore, though our algorithm provides a ranked
list of paragraphs in terms of relevance, only the top ranked one will be used. This
leads to two evaluation criteria.

(1) TOP: the method’s success rate in selecting the most relevant paragraph, measured
as how often the most relevant paragraph identified by the method matches one of
the two evaluator’s top ranked paragraph.

(2) COVERED: the method’s success rate in selecting a relevant paragraph, measured
as how often the most relevant paragraph identified by the method matches one of
the paragraphs identified as relevant by the evaluators.

Thus TOP and COVERED evaluate, respectively, whether our method will present the
graphic’s content at the most relevant point in an article and a relevant point in an
article.

We used the paragraph that was geographically closest to the information graphic as
a baseline method for comparison with the paragraph selected by our system. Table II
presents the results of the evaluation. P-KL and P-KLE select the best paragraph 45%
and 57% of the time, respectively, and select a relevant paragraph 62% and 67% of the
time, respectively. Both of our methods outperform the baseline method. A binomial
test shows that the improvements of P-KL over the baseline method and P-KLE over
P-KL for selecting the most relevant paragraph are both statistically significant at the
0.01 significance level or better.

16Since the selection of paragraphs is different for each document, the probability of chance agreement in
the kappa statistic is computed assuming that the probability of selection is 1/n where n is the number
of paragraphs in the document, as suggested by Brennan and Prediger [1981] when either or both of the
marginals can vary.
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7. SELECTING CONTENT OF THE INITIAL SUMMARY

Given the logical representation of a graphic’s intended message and the referent for
its measurement axis label, SIGHT can use FUF/SURGE [Elhadad and Robin 1999]
to realize an English sentence conveying the graph’s primary message. For example,
for the line graph in Figure 2, SIGHT can produce the sentence “This graphic conveys
a changing trend in annual difference from seattle’s 1899 sea level in inches, rela-
tively stable from 1901 to 1928 and then rising to 2003” which JAWS then reads to
the user as synthesized speech. Although a graphic’s intended message captures its
primary high-level communicative goal, we hypothesize that the graphic may contain
other salient propositions that elaborate on the intended message and are important to
include in an initial summary. For example, the line graph in Figure 2 is very volatile
with many sharp changes, and this feature presumably would be important to include
in the initial summary. This hypothesis is supported by an informal experiment in
which participants were asked to produce summaries for a series of line graphs [Mc-
Coy et al. 2001]; we observed that a description of the intended message was almost
always included in graph summaries written by human subjects and that the subjects
consistently augmented the intended message with descriptions of various salient vi-
sual features of the graphic (e.g., steepness of a trend line, volatility of data values).
Although summaries of different graphics belonging to the same intended message
category but having different visual features varied in the additional details provided
by the human subjects, which visual features were found salient also depended on the
graphic’s intended message. The fact that these summaries did not include all infor-
mation that could possibly be extracted from the graphic (e.g., the value of every point
on the line graph), but rather only propositions corresponding to the visual features
the subjects deemed most salient is consistent with Grice’s Maxim of Quantity [Grice
1975]: utterances should be as informative as necessary, but not more so.

We conducted a series of data collection studies designed to determine which propo-
sitions human subjects expect to find in a summary of a graph.17 In our initial work
involving simple bar charts, we asked subjects to fill out questionnaires in which they
were tasked with assigning an importance rating to various propositions that could
be extracted from a given bar chart. An analysis of the participants’ responses led us
to formulate a set of rules to determine the salience of various visual features; the
rules are triggered in SIGHT based on thresholds established for each visual feature.
However, due to the continuous nature of the data series in line graphs (as opposed
to the discrete nature of bar charts), it was not possible to present subjects with an
unbiased finite set of propositions to rate. Thus we performed a study in which hu-
man subjects were presented with a variety of different line graphs along with their
intended message and asked to complete a brief summary augmenting the intended
message with the important information they conveyed. This collection of summaries
was subsequently examined by a human annotator who identified which propositions
were included by the summary writers, and we formed rules for identifying the salience
of informational propositions in line graphs based on these annotations. Again, due to
the continuous nature of line graphs versus the discrete nature of bar charts, these
new rules included a weighted importance score linked to the magnitude of the asso-
ciated visual feature (e.g., the degree of steepness or volatility), rather than operating
according to thresholds as with bar charts.

17This work considered the graph in isolation. As noted in Section 11, future work will consider the accom-
panying text and its impact on the salience of graphic features.
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7.1. Content Identification Rules for Bar Charts

To identify propositions (in addition to the intended message) that should be included
in an initial summary of a bar chart, we constructed a set of 21 representative bar
charts representing different categories of intended messages and visual features. We
then conducted an experiment in which 20 human subjects were presented with sub-
sets of these bar charts, the intended message of the bar chart, and a list of additional
propositions that could be extracted from the bar chart (such as the value of the small-
est bar). The subjects were asked to classify these propositions into one of three groups
according to how important they thought it would be to include that proposition in
a brief textual summary of the graphic. These three categories were: Essential (the
proposition should be included in the summary), Possible (could be included, but not
essential), and Not Important (should not be included). Since different participants
assigned different levels of importance, we needed to identify the participants’ gen-
eral tendency. We assigned a numerical score to each importance level: Essential =
3, Possible = 1, and Not Important = 0.18 The importance level of a proposition was
computed by summing the scores of the importance levels assigned by the participants.
For example, if three subjects rated a proposition as Essential and two as Possible, the
importance score for that proposition was (3 ∗ 3) + (2 ∗ 1) = 11. We defined majority
importance level as the importance level that would be obtained if half of the partici-
pants were to classify a proposition as Essential. An individual proposition was labeled
as highly rated if its actual importance level was greater than or equal to the majority
importance level.

The rules for selecting propositions to include in the initial summaries of bar charts
were based on patterns observed between the intended message category, visual fea-
tures of the graphic, and the highly rated propositions identified by human judges. Two
types of rules were constructed: message-category-only rules and message-category-
visual-feature rules. If a proposition was marked as highly rated for all graphs in a
particular message category, then the choice to include that proposition depended only
on the message category and not on any visual features.

—Message-Category-only:

IF Message − category = m and Rating(P, m) = highly − rated
THEN select P

For propositions that were highly rated for only a particular subset of the graphics in
a given message category, we identified a visual feature present in graphics where the
proposition was highly rated and missing in graphics where it was not rated highly. A
second set of content identification rules used the presence or absence of this feature
to determine when to include the proposition.

—Message-Category-Visual-Feature:

IF Message − category = m and V isual − f eature = v
and Rating(P, m, v) = highly − rated and Rating(P, m,¬v) = ¬highly − rated

THEN select P

For example, in content identification rule (1) that follows, the message category of
the graphic is the only determining factor in deciding whether or not to include the
proposition in the initial summary. However, in rules (2) and (3), both the message
category and the presence of a visual feature (e.g., “not steady”, “within range”) are
used in the determination process.

18The reason for the (3,1,0) scale is to guarantee that a proposition will not be labeled as a highly rated
proposition if none of the participants classified it as Essential.
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Fig. 20. Sample bar chart processed by SIGHT.

(1) If (message category equals ‘increasing trend’) then include(proposition convey-
ing the rate of increase of the trend):
Include the proposition conveying the rate of increase of the trend for all bar charts
having an ‘increasing trend’ intended message.

(2) If [(message category equals ‘increasing trend’) and not steady(trend)] then in-
clude(proposition conveying the period(s) showing a decrease):
Include the proposition conveying the period(s) showing a decrease (i.e., the excep-
tions) for all bar charts having an ‘increasing trend’ intended message but which
are not steady.

(3) If [(message category equals ‘rank all’) and (all(value(bar)) within range((0.7 *
average(all bars)), (1.3 * average(all bars))))] then include(proposition indicating
that the bars vary only slightly):
If the values of all bars are close in a bar chart having a ‘rank all’ intended message,
then include the proposition indicating that bar values vary only slightly.

For rules involving visual features (e.g., (2) and (3) preceding), discrete thresholds
needed to be defined in order to determine whether the feature was present in a given
bar chart. For rule (2), a trend was considered “not steady” when there was at least one
bar with a value lower than the previous bar within an otherwise overall increasing
trend. Rules such as (2) are consistent with the Joshi/Webber/Weischdel maxim that
responses should be modified to avoid the hearer drawing false conclusions [Joshi et al.
1986]; in this case, the false conclusion that the trend is steady. For rule (3), the values
of all bars had to be within 70–130% of all other bars in order to select the proposition
indicating that bar values vary only slightly. A total of 31 content identification rules
were constructed (some covering multiple message categories), enabling propositions
to be selected for inclusion in the initial summary.

For example, given the bar chart in Figure 20, the following propositions are selected
for inclusion in the initial summary (in addition to a description of the overall intended
message):

—the rate of increase of the trend, which is slight19;
—the fact that the trend is not steady and has variability;
—the overall percentage increase in the trend, which is 225%.

19This refers to the fact that the year-by-year change is small.
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Fig. 21. Sample line graph created for this study.

7.2. Content Identification Rules for Line Graphs

To identify propositions (in addition to the intended message) that should be included
in an initial summary of a line graph, we selected 23 different line graphs covering
the eight most common intended message categories and different visual features. Ten
of the graphs were real-world examples taken directly from popular media sources.
Another ten graphs were adapted from real-world graphs, modified to isolate visual
features in order to study their individual effects. The final three graphs were specially
created to fill a gap in the coverage of message categories and visual features for
which no good example was available (e.g., Figure 21). Sixty-nine human subjects were
given all 23 line graphs (in different orders), each of which was accompanied by an
initial sentence conveying its intended message as identified by a human annotator.
For example, the initial sentence given for Figure 21 conveyed the changing trend in
Boscov’s jacket sales; namely, that sales rose from November to February and then fell
through May. Participants were tasked with writing additional sentences so that the
completed summary would be an appropriate summary for someone who was blind
that came across the graphic while reading popular media. They were told that the
summary should capture the most important information conveyed by the line graph,
and should not be misleading. They were also aware that the initial summary that they
wrote need not be exhaustive because a blind reader would have the opportunity to ask
follow-up questions if she desired. The participants wrote summaries for as many or
as few of the full set of 23 line graphs as they wished during a single one-hour session.

In total, 965 summaries were collected, with between 37 and 49 summaries for
each individual line graph. There was an average of 2.26 sentences per summary, in
addition to the initial sentence describing the intended message that was given to the
participants. Two example summaries collected for Figure 21 were as follows.

(1) “February has a much larger amount of jackets sold than the other months shown.
From December to January, there was a slight drop in the amount of jackets sold
and then a large spike from January to February.”

(2) “The values in November and May are pretty close, with both being around 37 or
38 jackets. At its peak (February), around 47 jackets were sold.”

This collection was analyzed by a human annotator who manually coded the proposi-
tions appearing in each individual summary. This annotation was performed in order
to determine, for each graphic, which propositions were used most often.
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We developed a set of rules to identify the most important propositions to include in
the initial summary of a line graph. Again, due to the continuous nature of time-series
data presented in a line graph as opposed to the discrete individual bars in a bar chart,
a slightly different approach was necessary. Our content identification rules for line
graphs take into account the magnitude of a given visual feature (e.g., the degree of
steepness or volatility) in assigning a weight to the corresponding proposition. In other
words, the inclusion of a proposition in the summary of a line graph is not a yes or
no scenario based on whether or not the measurement of a visual feature exceeds a
predefined threshold, but rather the strength of the visual feature affects how much
weight is assigned to the proposition, and then the highest ranking propositions are
added to the summary.

The weights that a rule assigns to a proposition are based on the relative frequencies
of the propositions in the summaries we collected from human subjects for graphs
reflecting similar situations. Similar to bar charts, we constructed Message-Category-
only rules and Message-Category-Visual-Feature rules.

—Message-Category-only:

IF Message − category = m
THEN select P with weight w1

—Message-Category-Visual-Feature:

IF Message − category = m and V isual − f eature = v
THEN select P with weight w2

However, some propositions (such as conveying the volatility of a line graph) depend
only on the visual feature; thus we included a third type of rule, Visual-Feature-only.

—Visual Feature-only:

IF V isual − f eature = v
THEN select P with weight w2

Message-Category-only rules were constructed when a plurality of human-written sum-
maries in our corpus for all line graphs belonging to a given message category contained
the corresponding proposition. Such rules assign a weight according to the frequency
with which the proposition was used. As shown in Eq. (4), this weight is based on the
proportion of summaries for each line graph in the corpus having intended message m
and containing proposition P.

w1 =
n∏

i=1

Pi

Si
(4)

In the preceding equation, n is the number of line graphs in this message category m, Si
is the total number of summaries for a particular line graph having message category
m, and Pi is the number of those summaries containing the proposition.

Weights for Message-Category-Visual-Feature and Visual-Feature-only rules are
slightly more complicated. The exact definition of this measure depends on the na-
ture of the corresponding visual feature (e.g., steepness of a trend line measured in
degrees of angle, volatility of a line), but we normalize all such measures so that they
fall in the range from 0 to 1. Since the impact of a visual feature is a matter of degree,
the weight assigned by the rule cannot simply rely on the proportion of summaries
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containing the proposition as in Message-Category-only rules. Instead, we use the co-
variance between the magnitude of the visual feature (|v|) and the frequency of the
corresponding proposition ( P

S ) appearing in the corpus summaries for the n graphs
displaying this visual feature, as shown in Eq. (5)

Cov

(
|v|, P

S

)
=

[(∑n
i=1 |vi|

n

∑n
i=1

Pi
Si

n

)
−

∑n
i=1 |vi| Pi

Si

n

]
(5)

Then, for an individual line graph with a magnitude of |v| for this visual feature, we
compute the weight w2 for the proposition P as shown in Eq. (6).

w2 = |v| ∗ Cov

(
|v|, P

S

)
(6)

Thus, the stronger a certain visual feature is in a given line graph, the higher the
weight assigned by the rule for the associated proposition. For example, volatility is
one such visual feature; a line graph may represent a trend or changing trend but
be very ragged with sharp changes as in Figure 2. To measure the magnitude of this
visual feature, our metric takes into account both the frequency of change in a trend
and the amplitude of these changes by computing

volatility = normalized(w1*w2),

where w1 is the ratio of the number of short jagged lines comprising the overall segment
whose volatility is being measured to the length of the overall segment on the x-axis,
and w2 is the sum of the ratios of the y-axis heights of the short jagged lines comprising
the segment to the overall length of the y-axis. The product of w1 and w2 is divided
by the maximum w1*w2 observed for a segment in our corpus, thereby producing a
normalized value between 0 and 1. Message-Category-Visual-Feature rules differ from
Visual-Feature-only rules in that they are restricted to a specific message category,
rather than any line graph exhibiting the particular visual feature.

The line graphs shown in Figures 2 and 10 belong to the same intended message
category (Change-trend), and thus would receive the same weights for propositions
covered by type 1 rules. However, since Figure 2 is far more volatile than Figure 10,
the type 2 rule for volatility would assign a high weight to this proposition for Figure 2,
and it is very likely to be included in the initial summary of this line graph (e.g., “The
values in this line graph vary a lot...”). This proposition might even displace a type 1
proposition that still appears in the summary for Figure 10. While initial summaries
and follow-up responses have been fully implemented for bar charts, current work is
addressing the implementation and evaluation for line graphs.

8. ORGANIZING SYSTEM RESPONSES

Once the content of a summary has been determined (i.e., the intended message and
important propositions selected), this information must be organized to form a coherent
text. This entails deciding how to order propositions with respect to each other and
also aggregating individual propositions so that they can be realized as more complex
sentences.

We developed a bottom-up generation approach [Demir et al. 2008] for this purpose.
Our approach takes advantage of the limited nature of the kinds of relations that
can exist between propositions in a descriptive domain [O’Donnell et al. 2001], and
utilizes the theory of global focus [Grosz and Sidner 1986] to order propositions. Our
approach first groups the propositions into three proposition classes (message related,
specific, and computational) based on the kind of information they convey about the
graph [Demir 2010], and then explores syntactically aggregating propositions within
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each class. The message related class contains propositions that convey the intended
message of the graphic. The specific class contains the propositions that focus on spe-
cific pieces of information in the graphic, such as the proposition conveying the bar with
the highest or lowest value. On the other hand, propositions in the computational class
capture computations or abstractions over the whole graphic, such as the proposition
conveying the overall amount of change in the trend. We hypothesize that the proposi-
tions within the message related class should be presented first in order to emphasize
the most important piece of information about the graph. We also hypothesize that
the entire graph should be brought back into the user’s focus of attention [Grosz and
Sidner 1986] before closing the system response. Thus, we define a partial ordering
of the proposition classes and present first the message related propositions, then the
specific propositions, and finally the computational propositions.

8.1. Representation

To represent the selected propositions as well as to gain the flexibility necessary to
structure and realize a system response, we used a set of basic propositions (minimal
information units). The set was defined such that both the intended message and
all propositions selected for inclusion can be broken down into these minimal units
without information loss. For representing the basic propositions, we defined two
kinds of knowledge base predicates (Relative Knowledge Base and Attributive Knowl-
edge Base) and a number of graphical elements, some of which are: (1) descriptor:
“a referring expression that represents what is being measured in the graphic”20,
(2) bar(x): “a particular bar in the graphic”, (3) all bars: “all bars depicted in the
graphic”, and (4) period(x,y): “a period depicted in the graphic (between bars x and y)”.
We used Relative Knowledge Base predicates to represent the basic propositions which
introduce graphical elements or express relations between the graphical elements,
and used Attributive Knowledge Base predicates to represent the basic propositions
which present an attribute or a characteristic of a graphical element. Each predicate
contains at least two arguments with the first being a graphical element. We refer
to the first argument as the “main entity” of a predicate and the other arguments as
the “secondary entities” which are either a graphical element or a string constant.
For example, consider the graphic in Figure 1 whose primary message is to convey
the rank of a bar among the other bars listed (Rank Bar). Sample instantiations of
predicates from the message-related class for the graphic include:

—shows(graphic, bar(3), 3, descriptor, bar category, all bars):
“The graphic shows that the third bar is the third highest with respect to the de-
scriptor among all bars of type bar category”

—consists(all bars, “Visa, Mastercard, American Express, Discover, Diner’s Club”):
“The depicted bars (i.e., all bars) are Visa, Mastercard, American Express, Discover,
and Diner’s Club”

—has attr(bar category, “type”, “credit card companies”):
“The depicted bars (i.e., all bars) represent credit card companies”

The first two predicates (i.e., shows and consists) are Relative Knowledge Base predi-
cates and the last predicate (i.e., has attr) is an Attributive Knowledge Base predicate.

Each basic proposition (formed by instantiating one of the basic predicates) can be
realized as a simple sentence with the main entity in subject position. However, a much
more natural text can be generated by aggregating these basic propositions into more
complex units. Shortly we describe a method for aggregating propositions that ensures

20Generation of that referring expression using the text associated with the graphic is described in detail in
Section 5.
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that the more complex unit can still be realized as a single sentence and balances
sentence complexity, readability, and number of sentences in forming a text.

8.2. Aggregation

One strategy for presenting the selected content is to preserve the partial ordering
of the proposition classes and to convey each basic proposition via a simple sentence
in a predefined order. However, such a straightforward approach would likely yield
a text which appears choppy and disfluent because the focus would be unlikely to
flow naturally from one sentence to the next. Thus, we decided to study how basic
propositions can be related to each other by aggregating their predicate representa-
tions into complex structures. Our aggregation approach treats each basic proposition
as a single-node tree, and explores different possibilities of obtaining more complex
trees (containing multiple propositions) by combining individual trees via four kinds
of operators. Our aggregation operators are similar to the clause-combining operations
used by the SPoT sentence planner [Walker et al. 2002] in AMELIA. The operators
contain applicability constraints which ensure that the complex trees that are formed
can be realized as a single sentence (though that sentence may be syntactically quite
complex). For a given set of propositions, then, choices exist with respect to how much
aggregation to perform in order to balance the number of sentences with the syntactic
complexity of the individual sentences.

Initially the basic propositions each start as single-node trees. The operators com-
bine trees to form more complex trees. The first three operators (And Operator,
Which Operator, and Same Operator) take advantage of opportunities for combining
propositions via different types of sentence conjunction (conjoining two sentences with
the same subject, forming a relative clause, and conjoining two sentences with the same
verb). In addition to combining individual trees, these operators introduce new nodes
into the tree structures when they are applied. These new nodes with a single entity
correspond to operational predicates And, Which, and Same. The And Operator and
Which Operator work on trees rooted by a proposition with a Relative Knowledge Base
or an And predicate, whereas the Same Operator works on trees rooted by a proposi-
tion with a Relative Knowledge Base predicate. The last operator, Attribute Operator,
works on propositions with an Attributive Knowledge Base predicate and essentially
recognizes the possibility for a proposition to be realized as an adjective in a noun
phrase. Our aggregation operators are defined as follows.

—And Operator. This operator combines two trees if the propositions at their root
share the same main entity. A proposition containing an And predicate with the
same main entity forms the root of the new tree and the trees that are combined
form the immediate descendents of this root.

—Which Operator. This operator attaches a tree (Tree T) as a descendent of a node M
in another tree (Tree U) via a Which predicate, if the main entity of the proposition
at the root of Tree T is a secondary entity for the proposition at node M of the other
tree (Tree U). That particular entity forms the main entity of the Which predicate.
Thus, Tree T will be an immediate child of the node with the Which predicate and
the node with the Which predicate will be an immediate child of node M in Tree U.

—Same Operator. This operator combines two trees if the propositions at their root
contain the same predicate but the main entities of these predicates are different. A
proposition with a Same predicate forms the root of the new tree, and the trees that
are combined form the descendents of this root. Since the descendents of the new tree
have different main entities, the main entity of the Same predicate is some unique
element not occurring elsewhere in the tree. For instance, in our implementation
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Fig. 22. A complex tree structure.

this element is obtained by appending a unique number, which isn’t used in another
Same predicate, to the term “random” (such as “random 0”).

—Attribute Operator. This operator attaches a single-node tree that consists solely of
a proposition with an Attributive Knowledge Base predicate, as a direct subchild of a
node M with a Relative Knowledge Base predicate in another tree, if the main entity
of the Attributive Knowledge Base predicate is an entity (main or secondary) for the
proposition at node M.

For example, the complex tree structure shown in Figure 22 is produced by apply-
ing these operators to the propositions shown in Section 8.1. In this example, the
node for the Attributive Knowledge Base predicate (*) is attached to its parent by the
Attribute Operator which recognized that the main entity (bar category) of the Attribu-
tive Knowledge Base predicate (has attr) is a secondary entity for the shows proposi-
tion. The node containing the Which predicate (**) is produced by the Which Operator.
This was possible because the main entity (all bars) of the consists predicate is a sec-
ondary entity of the shows proposition. Thus the Which predicate node was introduced
to join the original propositions.

We wish to select the best combination of operators to realize each set of basic propo-
sitions. Since all aggregation operators cannot be applied to all kinds of predicates and
the number of possible sets of basic propositions that should be organized is arguably
low, listing all possible combinations of propositions for a proposition class is practi-
cal in our work. Thus for each proposition class, we decided to exhaustively generate
all possible organizations (i.e., combinations of operators) and determine the best text
structure via an evaluation metric (described in Section 8.3). For this purpose, we treat
each proposition class (message related, specific, and computational) as a forest that
consists of all single-node trees in that class (which we refer to as the “initial candidate
forest”). When two trees are combined by an operator, a new candidate forest is pro-
duced which is later added to the set of existing candidate forests for that class. Within
each proposition class, our approach first applies the And Operator to all possible pairs
of trees in the initial candidate forest, which produces new candidate forests. This is
followed by the application of the Same Operator to all possible pairs of trees in each
candidate forest. Similarly, the Which Operator and finally the Attribute Operator are
applied to trees in the candidate forests produced earlier.

8.3. Evaluation Metric

For each proposition class, our text structuring approach produces a number of
candidate forests all of which contain one or more trees with different aggregation
(i.e., different realizations). We developed an evaluation metric to determine the best
forest which, once realized, would ideally stand at a midpoint between two extremes: a
text where each proposition is realized as a single sentence and a text where groups of
propositions are realized with sentences that are too complex. Our evaluation metric
takes three criteria into account in order to balance these extremes.
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score(A) = nm1(sentence(A)) + nm2(complexity(A)) + nm3(clause(A))

where,21

sentence(A): This stands for the number of sentences that will be used to realize
forest A and equals the number of trees in that forest.
complexity(A): This stands for the overall syntactic complexity of forest A and
equals the sum of the complexities of sentences that will be used to realize that forest.
We used the revised D-level sentence complexity scale [Covington et al. 2006] as the
basis of our syntactic complexity measure, and introduced “complexity estimators”
to rate individual trees. These are described in Demir et al. [2008].
clause(A): This stands for the overall comprehension complexity of all relative
clauses in sentences used for realizing forest A and equals the sum of the com-
prehension complexities of all clauses. The comprehension complexity of a relative
clause equals the product of its syntactic complexity and its position in the sentence,
which is equal to 2 if it is a center-embedded clause and is equal to 1 if it is a
right-branching clause.

The overall score of a candidate forest is calculated by summing the normalized scores
that it receives for each criterion. The scores are normalized with respect to the maxi-
mum score (i.e., 0 <= score <= 1), thus all criteria have an equal impact on the overall
score of a forest. Once the scores of all candidate forests are computed, the forest which
receives the lowest evaluation score is selected by our approach as the best forest that
can be obtained from a set of input propositions. The text structure of a system response
consists of the best forests identified for the message related, specific, and computa-
tional classes. Finally, the best text structure is realized via FUF/SURGE [Elhadad
and Robin 1999], a publicly available surface realizer.

8.4. Evaluation of the Text Structuring and Aggregation Approach

We conducted a user study to evaluate whether or not our decisions with respect
to different components of our approach contribute to the quality of the generated
text. The components we evaluated were: (i) the organization and ordering (O)
of the content (partial ordering of the proposition classes and classification of the
propositions), (ii) the aggregation (A) of the selected content into candidate forests,
and (iii) the metric (E) used to evaluate candidate forests.

Fifteen university undergraduate or graduate students participated in the study.
Each evaluator was presented with four different summaries of each of twelve bar
charts from our corpus. The participants did not participate in any of our earlier
user studies nor were they involved in this work. Although all summaries that we
presented to the participants were automatically produced by our generation approach,
the participants were unaware of this fact (i.e., whether summaries were human-
generated or computer-generated). In the study, we only used graphics that conveyed
an increasing or a decreasing trend, since these message categories exhibited the
greatest variety of possible summaries. For each graphic, the participants were asked
to rank the given set of summaries based on their quality in conveying the content.
The summaries varied according to the test parameters as follows.

—S O+A+E+: This is a summary that uses the ordering rules, the aggregation rules,
and receives the lowest (best) overall score by the evaluation metric. This is the
summary selected as best by our approach.

21The terms nm1, nm2, and nm3 stand for the normalized score of a given criteria.
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Table III. Ranking of Text Structuring and Aggregation

Summary Type Best Second-best Third-best Last
S O+A+E+ 65.6% 26.6% 6.7% 1.1%
S O+A+E- 16.7% 32.2% 33.3% 17.8%
S O-A+E+ 16.7% 30.0% 40.0% 13.3%
S O-A-E- 1.0% 11.2% 20.0% 67.8%

—S O+A+E-: This is a summary that uses the ordering and aggregation rules, but does
not receive the lowest overall score by the evaluation metric. This is the summary
that received the second lowest score.

—S O-A+E+: This is a summary where the propositions are randomly ordered (as
opposed to being grouped into message related, specific, and computational classes),
but aggregation takes place, and it receives the lowest overall score by the evaluation
metric.

—S O-A-E-: This is a summary consisting of single sentences that are randomly
ordered.

Table III displays the results of the evaluation. The results of the experiment revealed
that the summary selected as the best by our approach was most often (65.6% of the
time) rated as the best summary by the participants. Our approach was also shown
to select the summary which was rated as one of the top two summaries 92.2% of the
time. Moreover, the study showed that the summaries where the evaluation metric
(S O+A+E-) or the ordering of propositions (S O-A+E+) was omitted were substan-
tially less preferred by the participants. Overall, this user study validated our text
structuring and aggregation approach.

8.5. Evaluating Consistency of Bar Chart Initial Summary Content

To determine whether the knowledge that users were gleaning from our summaries
was consistent with the content of the graphics, we performed an experiment in which
18 subjects were presented with our system’s initial summary for each of four bar
charts. The selected bar charts conveyed an increasing trend, a decreasing trend, the
entity with the greatest value, and the rank of a particular entity among all the entities
depicted by bars in the bar chart. The subjects were then asked to draw the bar chart
described by the summary.

Three evaluators rated 68 drawings22 on a scale of 1 to 5, with 5 being the best
rating and indicating that the drawing captured the most important information that
should be conveyed about the bar chart while a rating of 1 indicated that the drawing
failed to reflect the original graphic. The Fleiss kappa for interrater agreement is close
to 0. However, we believe that the kappa statistic does not appropriately measure
agreement on rating tasks, since scores of 5 and 4 for a graph are treated the same as
scores of 5 and 1, yet the former reflects closer agreement about the quality of the graph
than does the latter. Thus we used Kendall’s W (also known as Kendall’s coefficient
of concordance) [Kendall and Babington-Smith 1939; Daniel 1989]. The computed W
value is .507. For large samples (more than 7 drawings), one computes a value (based
on W) to be used in a χ2 table which for our experiment is 101.86 with 67 degrees
of freedom. Thus at the .01 significance level, we can reject the null hypothesis and
conclude that there is agreement among the evaluators.

The graphs conveying an increasing trend and a decreasing trend received average
scores of 4.22 and 4.63, respectively, with standard deviations of .94 and .55. The
graphs conveying the entity with the maximum value and the rank of a particular
entity received average scores of 3.53 and 4.07, respectively, with standard deviations

22Four drawings were discarded because the subject drew a pie chart instead of a bar chart.
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of .98 and .84. Since our initial summaries do not contain all features of a bar chart
(such as the value for every bar), it is not surprising that the overall average score is
only 4.11. We collected feedback from the evaluators regarding the reasons for their
ratings. In the case of graphs presenting an increasing or decreasing trend, missing
values on the dependent axis and missing measurement axis descriptors (although
they were given in the summary) were the main reasons for lower ratings. We argue
that accurate y-axis labels are more important for scientific graphs than for graphs
from popular media where the key to understanding the article is assimilation of the
high-level content of the graphic. In the case of graphs conveying the entity with the
maximum value or the rank of a particular entity, the main reason for lower ratings
was incorrect ranking of some bars in the drawings. Our summaries do not convey the
ranks and values of all bars for these two kinds of graphs, and we argue that the rank
of every bar in the graph is not essential to understanding the high-level content of the
graph and thus should not be presented in the initial summary.

9. GENERATING FOLLOW-UP RESPONSES

An information graphic depicts a large amount of information. Throughout the devel-
opment of the system, we observed that users have different preferences for the amount
and kind of information that they want to receive about particular graphics from pop-
ular media. Often users were only interested in the high-level content of a graphic,
whereas at other times users wanted to receive more detailed information about a
graph (such as individual bar values) perhaps because they were more interested in
the subject the graphic was about. Presenting everything about a graphic at once is not
practical since this would overwhelm those users who might not be interested in many
details about the graph. On the other hand, presenting only the high-level content
would not satisfy users who have specific points of interest about the graphic. Our sys-
tem presents only a subset of the identified propositions in the initial summary. Thus,
there remains many unconveyed propositions which can be made available to the users
in order to allow them to receive as much information as they desire about the graphic.
Unfortunately, human subject experiments [Schwartz 2007] revealed a major problem
for congenitally blind participants in that they could not identify what other kinds of
information they might request after receiving the initial summary of a graphic. We
therefore provided a follow-up facility via a keystroke-driven menu-based interface in
order to enable users to glean more in-depth information about a graph after receiving
its initial summary. This follow-up mechanism also eliminates possible speech recog-
nition problems and issues in interpreting free-form questions. Our follow-up facility
is fully implemented for bar charts but extending the overall methodology to other
kinds of information graphics such as line graphs is in our future research agenda. In
the system, we offer three different kinds of follow-up responses and present them as
options in a dialog window (as shown in Figure 4).

—General Follow-up Response. This option is for users who want to receive additional
information about the graphic without specifying any preferences. If this follow-up
response is requested by a user, our system first ranks and then selects the most
highly rated propositions from among the propositions that could be conveyed about
the graphic. For example, for the graphic in Figure 1, if the user indicates his desire
for a general follow-up response by clicking the “General Information” button or
pressing “SHIFT+G” in the dialog window shown in Figure 4, our system generates
the follow-up response shown in Figure 23.

—Focused Follow-up Response. This option is for users who desire a particular kind of
further information about the graphic (such as more information about the change
observed in a trend). For each intended message category, we identified the relevant
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Fig. 23. General follow-up response after the initial summary.

Fig. 24. Main focused follow-up menu.

propositions and classified these propositions into a number of different categories
(up to five categories). If this follow-up response is requested by a user (by clicking
the “Focused Information” button in the main follow-up window shown in Figure 4
or by pressing “SHIFT+F”), the system first prompts the user to select the follow-up
category that he is interested in. For example, for graphics that convey the rank
of a bar, our system offers the categories shown in Figure 24: (i) a comparison of
the bar in focus with the bars that have the highest and the lowest values, (ii) a
comparison of the bar in focus with the bar that has the closest higher value, and a
comparison of the value of the bar in focus with the average value for all bars, and
(iii) more information about all bars listed in the graphic. Our system then ranks
the propositions and presents the most highly rated propositions classified in the
selected category. For example, suppose that after receiving the initial summary for
the graphic in Figure 1, the user selects “Focused Information” from the main follow-
up menu in Figure 4 and then selects the second focused follow-up category ( Bar in
Focus with Hi and Avg) from the focused follow-up menu in Figure 24; our system
then produces the follow-up response shown in Figure 25.

—Specific Follow-up Response. This option is for users who request specific information
about the graphic (i.e., those aspects of the graph that he finds interesting) such as
the rank of a specific bar in a bar chart. The information of interest to the user might
not be directly related to the graphic’s intended message or might not be conveyed
in the other kinds of follow-up responses or the initial summary. If this follow-up
response is requested by the user (by clicking the “Specific Information” button or
pressing “SHIFT+S” in the main follow-up window), specific follow-up categories
that are common to all intended message types are presented to the user (as shown
in Figure 26). For example, for the graphic in Figure 1, if the user selects the first
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Fig. 25. Focused follow-up response after the summary.

Fig. 26. Main specific follow-up menu.

Fig. 27. Specific follow-up response after the summary.

option from the main specific follow-up menu after receiving its initial summary, the
follow-up response shown in Figure 27 is presented by the system. No ranking takes
place in this kind of follow-up response, but the response might contain additional
information related to what is requested by the user.

9.1. Content Selection for Follow-up Responses

To determine the content of general and focused follow-up responses, we developed a
sophisticated graph-based ranking approach [Demir et al. 2010]. Our approach ranks
a set of propositions with respect to their importance at this point in the interaction
with the user so that the most highly rated of these propositions can be conveyed in a
follow-up response. We leveraged three main considerations in this approach in order
to produce coherent responses: (i) unrelated propositions should not be conveyed in
the same response, (ii) propositions that are normally communicated together should
appear in the same response, and (iii) redundant information should be avoided in
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a response. Our ranking approach utilizes an undirected weighted graph (which we
refer to as the “relation graph”) where all identified propositions are represented as
vertices and the relations between propositions are represented as edges. For each
intended message category, a different relation graph is constructed since the set of
applicable propositions varies between these categories. For example, one message
category for bar charts is Maximum (conveying the entity whose value is greatest).
The proposition capturing the value of the second largest entity is applicable for graphs
whose intended message falls into this message category but is not applicable if the
message category is Falling-trend. Four relation classes are defined to classify relations
between propositions where each is assigned a different numeric score indicating how
important it is to convey the propositions sharing that relation in the same follow-up
response. These scores are, in turn, used to specify weights on the edges of the graph.
In order to asses the a priori importance of the propositions, a stereotypical user model
is incorporated in this graph-based setting.

In this representation, our task is to determine the importance of each vertex and
rank these vertices accordingly. Our ranking approach iteratively runs the weighted
PageRank23 [Brin and Page 1998; Sinha and Mihalcea 2007] and makes proper ad-
justments on the edges of the relation graph after each iteration. For instance, the
PageRank algorithm is run and the proposition that is deemed most important is se-
lected for inclusion in the follow-up response. Then the weights on the edges connected
to this proposition are updated so that propositions that should be communicated with
it are given higher weight, and propositions that are redundant with it are given a
lower rate. Then the algorithm is run again to select the next proposition and the
cycle is repeated. These adjustments are made to achieve the design considerations
behind our approach, namely to favor the selection of related propositions in the same
response and to discourage the selection of propositions that are unrelated or that
convey redundant information.

Our content determination approach has two other notable features which are neces-
sary for modeling natural human interactions: (i) generating successive history-aware
responses and (ii) being flexible to generate different responses with different parame-
ter settings (e.g., generating user-tailored responses given a user model). For example,
our approach keeps a dialog history in order to relate the content of the current re-
sponse to previously communicated propositions (i.e., in the initial summary and previ-
ous follow-up responses of any kind). This enables the system to omit information that
has been recently conveyed, to determine when repetition of previously communicated
information is appropriate, and to use discourse markers to signal these repetitions.

Our content selection methodology was evaluated via two user studies where our
focus was on the content of general follow-up responses.24 In both studies, bar charts
with an increasing or a decreasing trend were used. Before the studies, each participant
was informed that she would be first given graphics along with their initial summaries
which should contain the most important information about the graph. Participants
were also told that the remaining pieces of information would be conveyed via general
follow-up responses where the information given in the first follow-up response should
be more important than the information in the second follow-up response. In the first
study, 19 graduate students were presented with three graphics randomly selected

23This metric calculates the importance of a vertex by taking into account the importance of all other vertices
and the relation of vertices to one another.
24Focused and specific follow-up responses are implemented in the SIGHT system but have not yet been
evaluated.
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Table IV. Statistics for each graph that was rated

Graph Number of raters Average rating Standard deviation
1 9 3.44 0.96
2 3 3.67 0.94
3 2 4.00 0.00
4 3 4.67 0.47
5 4 4.25 0.83
6 2 5.00 0.00
7 4 2.75 1.48
8 5 3.20 0.75
9 7 3.71 1.03
10 10 3.60 1.28
11 3 4.17 0.24
12 5 3.60 0.80

from twelve test graphics along with the initial summary.25 Then, they were presented
with two consecutive follow-up responses. Each participant was asked to evaluate the
system responses on the basis of her satisfaction (on a scale of 1 to 5 with 5 being the
best) and to specify whether or not any part of a response should be communicated
earlier or omitted. Table IV displays the number of subjects who rated each graph, the
average rating, and the standard deviation. Overall, the participants rated the system
favorably with an average of 3.69, a standard deviation of 1.08, and a median of 4. In
addition, no consensus was observed among the participants in regard to what content
should be added or eliminated in the system responses.

In the second study, 21 university students who did not participate in the first
study were presented with the same four graphics (selected from the 12 test graphics
described earlier). For each graphic, the participants were first presented with its initial
summary and a set of 18 propositions that were used to construct the relation graph
for graphics with an increasing or a decreasing trend. Each participant was then asked
to select four propositions that she/he deemed most important to be conveyed in the
first general follow-up response.

Surprisingly, the number of times that a proposition was selected by a participant
ranged from 0 to 13, with all but one or two propositions in every graph selected by at
least one participant. For the four graphs, the most popular proposition was selected
by 13, 11, 13, and 12 of the participants respectively and the second most popular
proposition by 12, 11, 13, and 9 of the participants respectively. If every proposition were
selected the same number of times, each proposition would be selected 4.67 times. The
number of propositions whose rate of selection exceeded this average was 8, 8, 7, and 6
for the four graphs. These statistics show that while there was some consensus about
the best proposition to include and some agreement about the second best proposition,
the selection of subsequent propositions was subjective and varied greatly.

For three of the four graphics, our system included the most popular proposition in
its follow-up response and for two of the graphs, our system included the second most
popular proposition. For all of the graphs, the system included three propositions from
among the six most popular propositions for that graphic, and in two cases included
four propositions from among the six most popular ones. Furthermore, the average
number of times that the participants selected the four most popular propositions was
9.9, whereas the average number of times that the participants selected the same
propositions selected by the system was 7.8. This study showed that the system was:

25Although Fleiss’s kappa does not require that each graphic be rated by the same subjects, it does require
that each graphic receive the same number of ratings. Since each subject was given a random selection of
three graphics, the number of ratings per graphic varies. Thus a kappa statistic of interrater agreement
cannot be computed.
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(1) successful at identifying a very important proposition to include in the follow-up
response, (2) with the exception of one graphic, all of the propositions selected by
the system were viewed as important (i.e., they ranked among the top six in terms
of number of participants who selected them), and (3) the average number of times
that the system’s propositions were also selected by the participants was well above
the average of 4.67. Thus from this study and the previous experiment, we conclude
that the system produces high-quality follow-up responses. However, future work will
examine how this content selection might be improved.

10. PRELIMINARY EVALUATION OF THE SIGHT SYSTEM

The goal of the SIGHT system is to provide blind individuals (or those with seriously
impaired eyesight) with access to information graphics in popular media. To evaluate
the effectiveness of our system, we conducted human subjects experiments in which the
subjects used SIGHT to answer important questions whose answers could be gleaned
only from a set of information graphics. To identify the important questions, referred
to as key questions, we first performed a two-stage experiment with sighted subjects.
In the first stage, 17 subjects were given a set of twelve bar charts and asked to list
the three most important questions whose answers they believed one should glean
from the graphic. The subjects had no knowledge of the SIGHT system or the kinds of
information it could provide. To ensure that the questions could be answered from the
graphic alone, we conducted a second stage of the experiment in which two graduate
students in computational linguistics analyzed the questions and removed any that
did not meet this restriction. We then ranked the questions by the number of times a
question was identified by a subject in the first stage of the experiment, and labeled
the questions that appeared most often for graphics in a particular message category
as key questions; that is, questions that our SIGHT system should certainly facilitate
answering. For example, for graphics whose intended message falls into the message
category Rank (conveying the rank of an entity with respect to other entities), the
following are three representative key questions.

—What is the value of the bar whose rank is in focus in the graphic?
—Which bar has the highest value?
—What is the value of the lowest bar?

We then recruited seven people with significant visual impairments, and who were
familiar with using a computer to read text either with a screenreader or a screen
magnifier, for a quantitative and qualitative evaluation of the SIGHT system. Some
were totally blind and the others had impaired eyesight to the extent that they used
a screen magnifier and thus could only view small pieces of a graphic at once. Each of
these subjects was shown how to use the SIGHT system and allowed to practice with
it. They were then given three graphics whose intended messages fell into different
message categories, and presented with the task of using SIGHT to obtain the answers
to three randomly selected key questions for that graphic. After the subjects completed
the tasks, an interview was conducted regarding the usability and effectiveness of the
SIGHT system.

The subjects successfully answered all of the key questions. Occasionally, the subjects
used only the initial summary of the graphic but in most cases they requested follow-up
information. The kinds and order of follow-up requests varied among the subjects, but
all three kinds of follow-up (general, focused, and specific) were utilized by the group.
These results led us to conclude that: (1) SIGHT is effective at providing access to
the kind of information that sighted subjects identify as important to glean from an
information graphic in popular media, and (2) the three different kinds of follow-up
information serve a role in providing appropriate access to information graphics.
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During the interview following the experiment, the subjects were asked to rate the
system on a scale from 1 to 10 with respect to usefulness and ease of use, where
high numbers equated with being extremely useful or very easy to use. The average
rating was 9.43 (standard deviation .73) for usefulness and 8.71 (standard deviation
.88) for ease of use. The subjects were overwhelmingly positive about the system and
the flexibility provided by the different kinds of follow-up responses. All of the subjects
stated that they would use SIGHT if it were available for everyday Web usage. As
stated by one subject,

“I think that having a system that can describe bar charts to blind and visually impaired users is an
extremely valuable resource. If this program had been available to me, I would have had the ability to
function as everyone else would.”

From these studies, we conclude that SIGHT’s methodology is effective at providing
access to the knowledge that one should glean from an information graphic. However,
our visually impaired subjects mentioned three limitations of the system that must be
addressed in future work. Although various accessibility recommendations were taken
into account while designing the user interface, individuals who use screen magnifi-
cation software found that some layout elements (e.g., radio buttons in some specific
follow-up dialog windows) were difficult for individuals to find and click on. The lay-
out should be improved to make these elements stand out more from the background.
Second, pressing keyboard accelerators or clicking navigational buttons to interact
with the system costs more time and effort for visually impaired users who also have
moderate to severe motor impairments. Thus, integrating speech recognition into the
interface would engage those users more easily and comfortably in the system. Finally,
the time that it takes to generate a system response in some message categories (i.e.,
those that require comparing a bar with others such as the Maximum message cate-
gory) is significantly longer than what is expected by the users. Therefore, techniques
for parallelizing system execution should be investigated to decrease the response time.

In the future, we will conduct more extensive experiments in which we compare
knowledge acquisition from multimodal documents by blind subjects with and without
the access to information graphics provided by SIGHT. In addition, we will perform
experiments in which blind subjects comment on what and why they are choosing
different kinds of follow-up in order to find desired information. Other colleagues are
developing a system that generates tactile representations of graphics from electronic
documents. We anticipate further experiments in which the two approaches are com-
pared, the advantages and disadvantages of each are identified, and a system that
offers both in combination is investigated.

11. FUTURE WORK

Our overall system evaluation has been concerned with whether SIGHT provides users
with easy access to the important knowledge conveyed by information graphics. Future
evaluation studies will examine the effectiveness of SIGHT in providing appropriate
access to information graphics in the context of reading a multimodal document. We
will invite individuals who are blind to use our system extensively while perusing
articles in popular media, and we will solicit in-depth feedback about their experiences
in order to identify modifications to our interface or methodology that will improve the
user experience.

In addition to fully implementing the construction of initial summaries and follow-
up responses for line graphs and extending SIGHT to handle pie charts, grouped bar
charts [Burns et al. 2010, 2012], multiple-line graphs, and composite graphics, we plan
to explore how we can provide a better overall experience for the user through deeper
integration of the text and graphical content. Currently, the information graphic is
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analyzed and summarized in isolation, and its description is simply inserted into the
most relevant paragraph without any connection with or transition to/from the textual
content. We want to improve this situation in three ways: taking the article text into
account when building a summary of the graphic, presenting the graphical summary
in a more cohesive way with respect to the article text, and ultimately generating an
abstractive summary of the entire multimodal document covering both the text and
graphical content.

Employing a novel architecture for abstractive summarization [Greenbacker et al.
2011], we will represent the entire multimodal document in a single, unified semantic
model. The intended message and other salient propositions extracted from the infor-
mation graphics by SIGHT will be decomposed and added to a model of the text built
with a semantic parser using a domain-specific grammar. Working from this unified
semantic model will enable our system to take both the text and graphical content into
account when producing a summary of the graphic. Rather than selecting propositions
from the information graphic based solely on its intended message and visual features,
the focus of the text can influence the choice of propositions. For example, if a line
graph is only moderately volatile, the corresponding proposition may not be weighted
highly enough to warrant inclusion in the initial summary. However, the article text
might include an emphasis on the volatility of the data presented in the graphic (e.g.,
by describing the “ups and downs” of a company’s stock price). The semantic model will
allow us to recognize this special focus and use it to boost the weight of the proposition
for volatility so that it appears in the summary of the line graph. Additionally, by un-
derstanding the structure and content of the article text, we will be able to determine
a more specific location within a paragraph at which to include the summary of the
graphic, and adjust the exact wording of the summary to ensure a natural transition
and improve cohesion.

Another benefit of working from a semantic model of the text and graphics is that we
will be able to generate a unified summary of the entire multimodal document, covering
content extracted from both sources. Our goal will be an interactive system where the
user can choose to access an entire multimodal document, or alternatively can request
a summary whose length is a user-specified percent of the document’s length. Such
output will provide individuals having sight impairments with the option to evaluate a
summary when deciding whether or not to commit the time required to read a lengthy
article, or to quickly get a sense of the most important concepts without having to read
the entire document.

12. CONCLUSION

SIGHT is an intelligent interactive system for providing blind individuals with access
to the knowledge conveyed by information graphics in popular media. Rather than
attempting to provide access to the graphic’s appearance by rendering it in an alter-
native medium such as sound or touch or by using speech to describe the appearance
of the graphic, SIGHT conveys the knowledge that one would glean from viewing the
graphic. It uses the JAWS screenreader within a Web browser to communicate infor-
mation to the user via speech, provides the user with the opportunity to obtain a brief
summary of a graphic’s high-level content at the most relevant point in a multimodal
article, and enables the user to obtain more detailed follow-up information if desired.
Evaluation of SIGHT with sight-impaired individuals suggests that SIGHT is effective
at providing access to information graphics. Thus SIGHT significantly advances the
opportunity for universal access to multimodal documents. Future work will focus on
extending SIGHT’s capability, particularly with regard to handling more complex infor-
mation graphics and to enabling the user to obtain multimodal document summaries
of user-specified length.
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