The Two-Stack PDA

- Turing machines never seemed like a natural extension — comparing FAs to PDAs
- There is no such extension between PDAs and TMs
- *Insight:* the addition of a PUSHDOWN STACK made a considerable improvement in the power of an FA
- *Idea:* What would happen if we add another PUSHDOWN STACK to a PDA? or 3? or 70?
Two-Pushdown Stack Machine — 2PDA

Definition

- A **two-pushdown stack machine**, denoted 2PDA, is like a PDA except that it has two PUSHDOWN STACKS
 - \(\text{STACK}_1 \)
 - \(\text{STACK}_2 \)
- When we push a character, we must indicate which stack we are PUSHing onto. We do this by renaming PUSH to PUSH\(_1\) and introduce a PUSH\(_2\) state.
- When we pop a character from a stack, we need to indicate which stack we are POPing from. We do this by renaming POP to POP\(_1\) and introduce a POP\(_2\) state.
- We also will insist that 2PDAs are deterministic
2PDA Example

START

READ₁

PUSH₁ a

b

READ₂

POP₁

a

PUSH₂ b

b

POP₂

ACCEPT

PUSH₁ a

a

POP₁

Δ

Δ

Δ

PUSH₂ b

a

POP₂

Δ

a b

READ₃
Theorem

2PDA = TM

In other words, any language accepted by a 2PDA can be accepted by some TM and any language accepted by a TM can be accepted by some 2PDA.

Proof.

Part 1 — Modeling a 2PDA on a TM

• A 2PDA has three locations where it can store information:
 1. INPUT TAPE
 2. STACK$_1$
 3. STACK$_2$

• A TM has one location where it can store information: the TAPE

• Model the TAPE to store INPUT TAPE, STACK$_1$, and STACK$_2$

(continued...)
Just Another TM

Proof.

• Assume # and $ are symbols not part of Σ or Γ
• Store on the TAPE the following:

 INPUT TAPE # STACK₁ $ STACK₂

• Always have the TAPE HEAD point at the # after any operation
• Simulating READ

 1. Move the TAPE HEAD to the left and find the rightmost “front” Δ
 2. Move one to the right to find the next input letter
 3. If this character is #, the input has been exhausted
 4. Otherwise, change this character into Δ
 5. Branch according to what was read. In each branch, move down to the #, then start simulating the next state

(continued...)
Proof.

- Simulating POP₁ and POP₂
 - Move to $ if POP₂; otherwise stay at #
 - Move to the right. If $ is read, then STACK₁ is empty
 - Else, we are removing the current character from our stack.
 - Branch to a unique path based on the character read
 - Call the DELETE subprogram
 - Rewind back to # and start simulating the next state

- Simulating PUSH₁ and PUSH₂
 - Move to $ if PUSH₂; otherwise stay at #
 - Call the INSERT subprogram
 - Rewind back to # and start simulating the next state

- When the 2PDA branches to ACCEPT, enter HALT

(continued...
Proof.

Part 2 — Modeling a TM on a 2PDA

• Or... how about we don’t do that
• Instead, why don’t we model a Post Machine on a 2PDA?

1. Transfer all of the PM STORE to STACK\(_1\) (use STACK\(_2\) as buffer to maintain order)
2. Emulate ADD \(X\) by moving everything from STACK\(_1\) to STACK\(_2\), PUSHing \(X\) onto STACK\(_1\), then POP everything from STACK\(_2\) back to STACK\(_1\)
3. Emulate READ by just calling POP\(_1\)
4. REJECTs can be discarded or kept the same
5. ACCEPTs remain exactly the same

• Key Insight: STACK\(_2\) is only used to initialized STACK\(_1\) and to simulate ADD

We have now shown 2PDA \(\subseteq\) TM and TM \(\subseteq\) 2PDA
nPDAs

Theorem

Any language accepted by a PDA with n STACKs (where n is 2 or more), called an nPDA, can also be accepted by some TM. In power we have:

$$nPDA = TM \text{ if } n \geq 2$$

Proof.

- Use similar representation of 2PDAs on a TM by introducing new separators: $\#_1, \#_2, \ldots, \#_n$
- Relevant PUSH and POP operations will function on the TM
- Therefore, $nPDA = TM$
- 2PDA was already determined to be as powerful as TM
- $2PDA = nPDA$

$$FA = TG = NFA < DPDA < PDA < 2PDA = nPDA = PM = TM$$
An Aside — Structure of the Book

Part 1

Regular Expressions, Finite Automata, Transition Graphs, Kleene’s Theorem, Finite Automata with Output, Regular Languages, Nonregular Languages (Pumping Lemma), Decidability
All of these are equivalent to a 0PDA

Part 2

Context-Free Grammars, Grammatical Format, Pushdown Automata, CFG=PDA, Non-Context-Free Languages (Pumping Lemma), Context-Free Languages, Decidability
All of these are equivalent to a 1PDA

Part 3

Turing Machines, Post Machines, Minsky’s Theorem...
All of these are equivalent to a 2PDA
1. [4pts each] VERYEQUAL is the language ($\Sigma = \{a \ b \ c\}$) as all strings that have as many total a’s as total b’s as total c’s.
 - Draw a TM that accepts VERYEQUAL
 - Draw a PM that accepts VERYEQUAL
 - Draw a 3PDA that accepts VERYEQUAL
 - Draw a 2PDA that accepts VERYEQUAL

2. [4pts] Draw a 2PDA that accepts EVEN-EVEN and keeps at most two letters in its STACKs.