

CSCI 340: Computational Models

Minsky's Theorem

Chapter 21 Department of Computer Science

The Two-Stack PDA

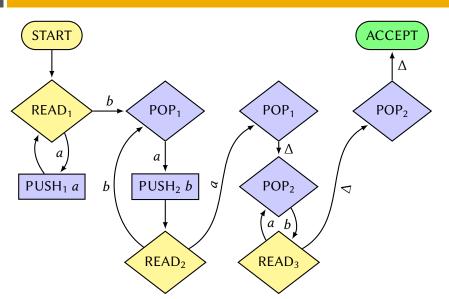
- Turing machines never seemed like a natural extension comparing FAs to PDAs
- There is no such extension between PDAs and TMs
- Insight: the addition of a PUSHDOWN STACK made a considerable improvement in the power of an FA
- Idea: What would happen if we add another PUSHDOWN STACK to a PDA? or 3? or 70?

Two-Pushdown Stack Machine — 2PDA

Definition

- A two-pushdown stack machine, denoted 2PDA, is like a PDA except that it has two PUSHDOWN STACKS
 - STACK₁
 - STACK₂
- When we push a character, we must indicate which stack we are PUSHing onto. We do this by renaming PUSH to PUSH₁ and introduce a PUSH₂ state.
- When we pop a character from a stack, we need to indicate which stack we are POPing from. We do this by renaming POP to POP₁ and introduce a POP₂ state.
- We also will insist that 2PDAs are deterministic

2PDA Example



<u>Th</u>eorem

2PDA = TM

In other words, any language accepted by a 2PDA can be accepted by some TM and any language accepted by a TM can be accepted by some 2PDA.

Proof.

Part 1 - Modeling a 2PDA on a TM

- A 2PDA has three locations where it can store information:
 - INPUT TAPE
 - STACK₁
 - STACK₂
- A TM has one location where it can store information: the TAPE
- Model the TAPE to store INPUT TAPE, STACK₁, and STACK₂

(continued...)

Proof.

- Assume # and \$ are symbols not part of Σ or Γ
- Store on the TAPE the following:

```
INPUT TAPE # STACK<sub>1</sub> $ STACK<sub>2</sub>
```

- Always have the TAPE HEAD point at the # after any operation
- Simulating READ
 - **1** Move the TAPE HEAD to the left and find the rightmost "front" Δ
 - Move one to the right to find the next input letter
 - 3 If this character is #, the input has been exhausted
 - **4** Otherwise, change this character into Δ
 - 6 Branch according to what was read. In each branch, move down to the #, then start simulating the next state

(continued...)

Proof.

- Simulating POP₁ and POP₂
 - Move to \$ if POP₂; otherwise stay at #
 - Move to the right. If \$ is read, then STACK₁ is empty
 - Else, we are removing the current character from our stack.
 - Branch to a unique path based on the character read
 - Call the DELETE subprogram
 - Rewind back to # and start simulating the next state
- Simulating PUSH₁ and PUSH₂
 - Move to \$ if PUSH₂; otherwise stay at #
 - Call the INSERT subprogram
 - Rewind back to # and start simulating the next state
- When the 2PDA branches to ACCEPT, enter HALT

(continued...)

Proof.

Part 2 — Modeling a TM on a 2PDA

- Or... how about we don't do that
- Instead, why don't we model a Post Machine on a 2PDA?
 - Transfer all of the PM STORE to STACK₁ (use STACK₂ as buffer to maintain order)
 - Emulate ADD X by moving everything from STACK₁ to STACK₂, PUSHing X onto STACK₁, then POP everything from STACK₂ back to STACK₁
 - 3 Emulate READ by just calling POP₁
 - 4 REJECTs can be discarded or kept the same
 - 6 ACCEPTs remain exactly the same
- Key Insight: STACK₂ is only used to initialized STACK₁ and to simulate ADD

We have now shown $2PDA \subseteq TM$ and $TM \subseteq 2PDA$

*n*PDAs

Theorem

Any language accepted by a PDA with n STACKs (where n is 2 or more), called an nPDA, can also be accepted by some TM. In power we have:

$$nPDA = TM$$
 if $n \ge 2$

Proof.

- Use similar representation of 2PDAs on a TM by introducing new separators: $\#_1, \#_2, ..., \#_n$
- Relevant PUSH and POP operations will function on the TM
- Therefore, nPDA = TM
- 2PDA was already determined to be as powerful as TM
- 2PDA = nPDA

FA = TG = NFA < DPDA < PDA < 2PDA = nPDA = PM = TM

An Aside — Structure of the Book

Part 1

Regular Expressions, Finite Automata, Transition Graphs, Kleene's Theorem, Finite Automata with Output, Regular Languages, Nonregular Languages (Pumping Lemma), Decidability All of these are equivalent to a OPDA

Part 2

Context-Free Grammars, Grammatical Format, Pushdown Automata, CFG=PDA, Non-Context-Free Languages (Pumping Lemma), Context-Free Languages, Decidability

All of these are equivalent to a 1PDA

Part 3

Turing Machines, Post Machines, Minsky's Theorem... All of these are equivalent to a 2PDA

Homework 11a

- **1** [4pts each] VERYEQUAL is the language ($\Sigma = \{a \ b \ c\}$) as all strings that have as many total a's as total b's as total c's
 - Draw a TM that accepts VERYEQUAL
 - Draw a PM that accepts VERYEQUAL
 - Draw a 3PDA that accepts VERYEQUAL
 - Draw a 2PDA that accepts VERYEQUAL
- [4pts] Draw a 2PDA that accepts EVEN-EVEN and keeps at most two letters in its STACKs