CSCI 340: Computational Models
Background

Department of Computer Science

R

The Theory of Computers

- · Form mathematical models that will describe
 - parts of computers
 - types of computers
 - and similar machines
 - ... with varying degrees of accuracy
- Mathematical doesn't necessarily mean geometry or calculus
- Make claims and support them with logic and proofs
- The material in this class is timeless it carries through general theory of computation. Agnostic to:
 - computer architecture
 - programming language
 - operating system

The Building Blocks of Theory of Computation

- Mathematical Logic
- Set Theory
- Mathematical Proofs
- Universal Algorithm Machine
 - Alonzo Church
 - Stephen Kleene
 - Emil Post
 - Andre Markov
 - John Von Neumann
 - Alan Turing

Why is Theory of Computation Important?

- Because Dr. Schwartz says it is
- Because MU CS says it is
- Because computer science is built on mathematics?

Why is Theory of Computation Important?

- 1 We want to prove proofs in mathematics
- We want to use mathematics to describe how things work
 - Theory of Computation: modeling algorithms
 - "Neural Networks": modeling thought
- We want to understand how computers work from a rigorous logical view rather than from details (See CSCI 362, 370, 380)

Computer Theory

• Three Primary Components:

- Theory of Automata
- Theory of Formal Languages
- Theory of Turing Machines

• General Overview of the Course:

- Analyzing different types of theoretical machines
- Describing these theoretical machines as mathematical models
- Determine their strengths and weaknesses
- Discover the concept of *computability*