
ISBN 0-321-49362-1

Chapter 14

Exception Handling
and Event Handling

Copyright © 2015 Pearson. All rights reserved. 1-2

Chapter 14 Topics

• Introduction to Exception Handling
• Exception Handling in C++
• Exception Handling in Java
• Exception Handling in Python and Ruby
• Introduction to Event Handling
• Event Handling with Java
• Event Handling in C#

Copyright © 2015 Pearson. All rights reserved. 1-3

Introduction to Exception Handling

• In a language without exception handling
– When an exception occurs, control goes to the

operating system, where a message is displayed
and the program is terminated

• In a language with exception handling
– Programs are allowed to trap some exceptions,

thereby providing the possibility of fixing the
problem and continuing

Copyright © 2015 Pearson. All rights reserved. 1-4

Basic Concepts

• Many languages allow programs to trap
input/output errors (including EOF)

• An exception is any unusual event, either
erroneous or not, detectable by either hardware or
software, that may require special processing

• The special processing that may be required after
detection of an exception is called exception
handling

• The exception handling code unit is called an
exception handler

Copyright © 2015 Pearson. All rights reserved. 1-5

Exception Handling Alternatives

• An exception is raised when its associated event
occurs

• A language that does not have exception handling
capabilities can still define, detect, raise, and
handle exceptions (user defined, software detected)

• Alternatives:
– Send an auxiliary parameter or use the return value to

indicate the return status of a subprogram
– Pass a label parameter to all subprograms (error return is

to the passed label)
– Pass an exception handling subprogram to all

subprograms

Copyright © 2015 Pearson. All rights reserved. 1-6

Advantages of Built-in Exception
Handling

• Error detection code is tedious to write and
it clutters the program

• Exception handling encourages
programmers to consider many different
possible errors

• Exception propagation allows a high level
of reuse of exception handling code

Copyright © 2015 Pearson. All rights reserved. 1-7

Design Issues

• How and where are exception handlers
specified and what is their scope?

• How is an exception occurrence bound to
an exception handler?

• Can information about the exception be
passed to the handler?

• Where does execution continue, if at all,
after an exception handler completes its
execution? (continuation vs. resumption)

• Is some form of finalization provided?

Copyright © 2015 Pearson. All rights reserved. 1-8

Design Issues (continued)

• How are user-defined exceptions specified?
• Should there be default exception handlers

for programs that do not provide their own?
• Can predefined exceptions be explicitly

raised?
• Are hardware-detectable errors treated as

exceptions that can be handled?
• Are there any predefined exceptions?
• How can exceptions be disabled, if at all?

Copyright © 2015 Pearson. All rights reserved. 1-9

Exception Handling Control Flow

Copyright © 2015 Pearson. All rights reserved. 1-10

Exception Handling in C++

• Added to C++ in 1990
• Design is based on that of CLU, Ada, and

ML

Copyright © 2015 Pearson. All rights reserved. 1-11

C++ Exception Handlers

• Exception Handlers Form:
try {
-- code that is expected to raise an exception
}
catch (formal parameter) {
-- handler code
}
...
catch (formal parameter) {
-- handler code
}

Copyright © 2015 Pearson. All rights reserved. 1-12

The catch Function

• catch is the name of all handlers--it is an
overloaded name, so the formal parameter
of each must be unique

• The formal parameter need not have a
variable
– It can be simply a type name to distinguish the

handler it is in from others
• The formal parameter can be used to

transfer information to the handler
• The formal parameter can be an ellipsis, in

which case it handles all exceptions not yet
handled

Copyright © 2015 Pearson. All rights reserved. 1-13

Throwing Exceptions

• Exceptions are all raised explicitly by the
statement:
throw [expression];

• The brackets are metasymbols
• A throw without an operand can only

appear in a handler; when it appears, it
simply re-raises the exception, which is
then handled elsewhere

• The type of the expression disambiguates
the intended handler

Copyright © 2015 Pearson. All rights reserved. 1-14

Unhandled Exceptions

• An unhandled exception is propagated to
the caller of the function in which it is
raised

• This propagation continues to the main
function

• If no handler is found, the default handler
is called

Copyright © 2015 Pearson. All rights reserved. 1-15

Continuation

• After a handler completes its execution,
control flows to the first statement after
the last handler in the sequence of
handlers of which it is an element

• Other design choices
– All exceptions are user-defined
– Exceptions are neither specified nor declared
– The default handler, unexpected, simply

terminates the program; unexpected can be
redefined by the user

– Functions can list the exceptions they may raise
– Without a specification, a function can raise any

exception (the throw clause)

Copyright © 2015 Pearson. All rights reserved. 1-16

Evaluation

• There are no predefined exceptions
• It is odd that exceptions are not named and

that hardware- and system software-
detectable exceptions cannot be handled

• Binding exceptions to handlers through the
type of the parameter certainly does not
promote readability

Copyright © 2015 Pearson. All rights reserved. 1-17

Exception Handling in Java

• Based on that of C++, but more in line with
OOP philosophy

• All exceptions are objects of classes that
are descendants of the Throwable class

Copyright © 2015 Pearson. All rights reserved. 1-18

Classes of Exceptions

• The Java library includes two subclasses of
Throwable :
– Error

• Thrown by the Java interpreter for events such as heap
overflow

• Never handled by user programs
– Exception

• User-defined exceptions are usually subclasses of this
• Has two predefined subclasses, IOException and
RuntimeException (e.g.,
ArrayIndexOutOfBoundsException and
NullPointerException

Copyright © 2015 Pearson. All rights reserved. 1-19

Java Exception Handlers

• Like those of C++, except every catch
requires a named parameter and all
parameters must be descendants of
Throwable

• Syntax of try clause is exactly that of C++
• Exceptions are thrown with throw, as in

C++, but often the throw includes the new
operator to create the object, as in:

throw new MyException();

Copyright © 2015 Pearson. All rights reserved. 1-20

Binding Exceptions to Handlers

• Binding an exception to a handler is
simpler in Java than it is in C++
– An exception is bound to the first handler with a

parameter is the same class as the thrown
object or an ancestor of it

• An exception can be handled and rethrown
by including a throw in the handler (a
handler could also throw a different
exception)

Copyright © 2015 Pearson. All rights reserved. 1-21

Continuation

• If no handler is found in the try construct, the
search is continued in the nearest enclosing try
construct, etc.

• If no handler is found in the method, the exception
is propagated to the method’s caller

• If no handler is found (all the way to main), the
program is terminated

• To insure that all exceptions are caught, a handler
can be included in any try construct that catches
all exceptions
– Simply use an Exception class parameter
– Of course, it must be the last in the try construct

Copyright © 2015 Pearson. All rights reserved. 1-22

Checked and Unchecked Exceptions

• The Java throws clause is quite different
from the throw clause of C++

• Exceptions of class Error and
RunTimeException and all of their
descendants are called unchecked
exceptions; all other exceptions are called
checked exceptions

• Checked exceptions that may be thrown by
a method must be either:
– Listed in the throws clause, or
– Handled in the method

Copyright © 2015 Pearson. All rights reserved. 1-23

Other Design Choices

• A method cannot declare more exceptions in its
throws clause than the method it overrides

• A method that calls a method that lists a particular
checked exception in its throws clause has three
alternatives for dealing with that exception:
– Catch and handle the exception
– Catch the exception and throw an exception that is listed

in its own throws clause
– Declare it in its throws clause and do not handle it

Copyright © 2015 Pearson. All rights reserved. 1-24

The finally Clause

• Can appear at the end of a try construct
• Form:

finally {
...

}

• Purpose: To specify code that is to be
executed, regardless of what happens in
the try construct

Copyright © 2015 Pearson. All rights reserved. 1-25

Example

• A try construct with a finally clause can be used
outside exception handling

try {
for (index = 0; index < 100; index++) {

…
if (…) {

return;
} //** end of if

} //** end of try clause
finally {

…
} //** end of try construct

Copyright © 2015 Pearson. All rights reserved. 1-26

Assertions

• Statements in the program declaring a boolean
expression regarding the current state of the
computation

• When evaluated to true nothing happens
• When evaluated to false an AssertionError

exception is thrown
• Can be disabled during runtime without program

modification or recompilation
• Two forms

– assert condition;
– assert condition: expression;

Copyright © 2015 Pearson. All rights reserved. 1-27

Evaluation

• The types of exceptions makes more sense
than in the case of C++

• The throws clause is better than that of
C++ (The throw clause in C++ says little to
the programmer)

• The finally clause is often useful
• The Java interpreter throws a variety of

exceptions that can be handled by user
programs

Exception Handling in Python

• Exceptions are objects; the base class is
BaseException

• All predefined and user-defined exceptions
are derived from Exception

• Predefined subclasses of Exception are
ArithmeticError (subclasses are OverflowError,
ZeroDivisionError, and FloatingPointError) and
LookupError (subclasses are IndexError and
KeyError)

Copyright © 2015 Pearson. All rights reserved. 1-28

Exception Handling in Python
(continued)

try:
- The try block

except Exception1:

- Handler for Exception1

except Exception2:

- Handler for Exception2
...

else:
- The else block (no exception is raised)

finally:
- the finally block (do it no matter what)

Copyright © 2015 Pearson. All rights reserved. 1-29

Exception Handling in Python
(continued)
• Handlers handle the named exception plus

all subclasses of that exception, so if the
named exception is Exception, it handlers all
predefined and user-defined exceptions

• Unhandled exceptions are propagated to
the nearest enclosing try block; if no
handler is found, the default handler is
called

• Raise IndexError creates an instance
• The raised exception object can be gotten:

except Exception as ex_obj:

Copyright © 2015 Pearson. All rights reserved. 1-30

Exception Handling in Python
(continued)

• The assert statement tests its Boolean
expression (first parameter) and sends its
second parameter to the constructor for the
exception object to be raised
assert test, data

Copyright © 2015 Pearson. All rights reserved. 1-31

Exception Handling in Ruby

• Exceptions are objects
• There are many predefined exceptions
• All exceptions that are user handled are

either StandardError class or a subclass of it
• StandardError is derived from Exception, which

has two methods, message and backtrace
• Exceptions can be raised with raise, which

often has the form:
raise ″bad parameter″ if count == 0

Copyright © 2015 Pearson. All rights reserved. 1-32

Exception Handling in Ruby (continued)

• Handlers are placed at the end of a begin-
end block of code; introduced by rescue
begin

- Statements in the block
rescue
- Handler
end

• The block could include else and/or ensure
clauses, which are like else and finally in
Java

Copyright © 2015 Pearson. All rights reserved. 1-33

Exception Handling in Ruby (continued)

• Unlike the other languages we have
discussed, in Ruby the code that raised an
exception can be rerun by placing a retry
statement at the end of the handler

Copyright © 2015 Pearson. All rights reserved. 1-34

Copyright © 2015 Pearson. All rights reserved. 1-35

Summary

• Ada provides extensive exception-handling facilities with a
comprehensive set of built-in exceptions.

• C++ includes no predefined exceptions
• Exceptions are bound to handlers by connecting the type of

expression in the throw statement to that of the formal
parameter of the catch function

• Java exceptions are similar to C++ exceptions except that a
Java exception must be a descendant of the Throwable class.
Additionally Java includes a finally clause

