Lab 3: Moore and Mealy Machines

CSCI 340: Computational Models

100 points

Submission will be through autolab.millersville.edu

Remember to use JFLAP (version 7.1) to complete these problems.

Steps to Follow

- Go to AutoLab and download the handout for Lab 3. This will give you a .zip file with six .jff files in it. The structure of the .zip file should be:
\$ zip -sf handout.zip
Archive contains:
handout/
handout/1.jflap.jff
handout/2.jflap.jff
handout/3.jflap.jff
handout/4.jflap.jff
handout/5.jflap.jff
handout/6.jflap.jff
handout/README.txt
- Do NOT change the file names. Edit the files in JFLAP to create the appropriate automata.
- When you are ready to submit one or more automata for testing, create a . zip file of the directory (it must still be called handout). This should exactly match the structure of the handout .zip file.
- Submit the created . zip file to AutoLab.

1. (10pts) Convert the following Moore machine to a Mealy machine:

2. (10pts) Convert the following Mealy machine to a Moore machine.

Make sure your leading character is a 0 .

3. (15pts) Convert the following Mealy machine to a Moore machine.

Make sure your leading character is a 0 .

4. (20pts) Design a Moore machine to perform a parity check on the input string. The output of the string ends in 1 if the total number of 1-bits in the input is odd and 0 if the total number of 1-bits is even. $\Sigma=\Gamma=\left\{\begin{array}{ll}0 & 1\end{array}\right\}$.
5. (20pts) Moore and Mealy machines are often used in circuit modeling. One of the components of a circuit might be a delay - which remembers input and echoes it later. Delays are measured in units that represent clock cycles.
Design a Mealy machine that represents a one-unit delay. Assume the first output is always a $0 . \Sigma=\Gamma=\left\{\begin{array}{ll}0 & 1\end{array}\right\}$

Input	Output
1001	0100
1100100	0110010

6. (25pts) Design a Mealy machine that represents a two-unit delay. Assume the first two output characters are always $0 . \Sigma=\Gamma=\left\{\begin{array}{ll}0 & 1\end{array}\right\}$

Input	Output
1001	0010
1100100	0011001

