
Rational Agents (Chapter 2)



Agents
• An agent is anything that can be viewed as perceiving its 

environment through sensors and acting upon that 
environment through actuators



Example: Vacuum-Agent
• Percepts:

Location and status, 
e.g., [A,Dirty]

• Actions:
Left, Right, Suck, NoOp

function Vacuum-Agent([location,status]) returns an action
• if status = Dirty then return Suck
• else if location = A then return Right
• else if location = B then return Left



Rational agents
• For each possible percept sequence, a rational 

agent should select an action that is expected to 
maximize its performance measure, given the 
evidence provided by the percept sequence and 
the agent’s built-in knowledge

• Performance measure (utility function): 
An objective criterion for success of an agent's 
behavior

• Expected utility:

• Can a rational agent make mistakes?

EU(action) = P(outcome | action)U(outcome)
outcomes
∑



Back to Vacuum-Agent
• Percepts:

Location and status, 
e.g., [A,Dirty]

• Actions:
Left, Right, Suck, NoOp

function Vacuum-Agent([location,status]) returns an action
• if status = Dirty then return Suck
• else if location = A then return Right
• else if location = B then return Left

• Is this agent rational?
– Depends on performance measure, environment properties



Specifying the task environment
• PEAS: Performance measure, Environment, Actuators, 

Sensors 
• P: a function the agent is maximizing (or minimizing)

– Assumed given
– In practice, needs to be computed somewhere

• E: a formal representation for world states
– For concreteness, a tuple (var1=val1, var2=val2, … ,varn=valn)

• A: actions that change the state according to a transition model
– Given a state and action, what is the successor state 

(or distribution over successor states)?

• S: observations that allow the agent to infer the world state
– Often come in very different form than the state itself 
– E.g., in tracking, observations may be pixels and state 

variables 3D coordinates



PEAS Example: Autonomous taxi
• Performance measure

– Safe, fast, legal, comfortable trip, maximize 
profits

• Environment
– Roads, other traffic, pedestrians, customers

• Actuators
– Steering wheel, accelerator, brake, signal, 

horn
• Sensors

– Cameras, LIDAR, speedometer, GPS, 
odometer, engine sensors, keyboard



Another PEAS example: Spam filter
• Performance measure

– Minimizing false positives, false negatives
• Environment

– A user’s email account, email server
• Actuators

– Mark as spam, delete, etc.
• Sensors

– Incoming messages, other information about 
user’s account



Environment types
• Fully observable vs. partially observable
• Deterministic vs. stochastic
• Episodic vs. sequential
• Static vs. dynamic
• Discrete vs. continuous
• Single agent vs. multi-agent
• Known vs. unknown



Fully observable vs. partially observable
• Do the agent's sensors give it access to the complete 

state of the environment?
– For any given world state, are the values of all the variables 

known to the agent?

vs.

Source: L. Zettlemoyer



Deterministic vs. stochastic
• Is the next state of the environment completely 

determined by the current state and the agent’s action?
– Is the transition model deterministic (unique successor state 

given current state and action) or stochastic (distribution over 
successor states given current state and action)?

– Strategic: the environment is deterministic except for the actions 
of other agents

vs.



Episodic vs. sequential
• Is the agent’s experience divided into unconnected 

single decisions/actions, or is it a coherent sequence of 
observations and actions in which the world evolves 
according to the transition model?

vs.



Static vs. dynamic
• Is the world changing while the agent is thinking?

• Semidynamic: the environment does not change with the 
passage of time, but the agent's performance score does

vs.



Discrete vs. continuous
• Does the environment provide a fixed number of distinct 

percepts, actions, and environment states?
– Are the values of the state variables discrete or continuous?
– Time can also evolve in a discrete or continuous fashion

vs.



Single-agent vs. multiagent
• Is an agent operating by itself in the environment?

vs.



Known vs. unknown
• Are the rules of the environment (transition model and 

rewards associated with states) known to the agent?
– Strictly speaking, not a property of the environment, but of the 

agent’s state of knowledge

vs.
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Preview of the course
• Deterministic environments: search, constraint 

satisfaction, classical planning
– Can be sequential or episodic

• Multi-agent, strategic environments: minimax search, 
games
– Can also be stochastic, partially observable

• Stochastic environments
– Episodic: Bayesian networks, pattern classifiers
– Sequential, known: Markov decision processes
– Sequential, unknown: reinforcement learning



Review: PEAS



Review: PEAS
• P: Performance measure

– Function the agent is maximizing (or minimizing)
• E: Environment

– A formal representation for world states
– For concreteness, a tuple (var1=val1, var2=val2, … ,varn=valn)

• A: Actions
– Transition model: Given a state and action, what is the 

successor state (or distribution over successor states)?
• S: Sensors

– Observations that allow the agent to infer the world state
– Often come in very different form than the state itself 



Review: Environment types
• Fully observable vs. partially observable
• Deterministic vs. stochastic (vs. strategic)
• Episodic vs. sequential
• Static vs. dynamic (vs. semidynamic)
• Discrete vs. continuous
• Single agent vs. multi-agent
• Known vs. unknown
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