
CSCI 340: Computational Models

Transition Graphs

Chapter 6 Department of Computer Science



Relaxing Restraints on Inputs

• We can build an FA that accepts only the word baa!
• 5 states because an FA can only process one le�er at a time.
• Can we construct a more powerful machine?

1 / 14



Relaxing Restraints on Inputs

• We can build an FA that accepts only the word baa!
• 5 states because an FA can only process one le�er at a time.
• Can we construct a more powerful machine?

q0

q1

q2

q3

ba

aa ab bb

b

a

a, b

a, b

Only processing one- or two- characters at a time

1 / 14



Relaxing Restraints on Inputs

• We can build an FA that accepts only the word baa!
• 5 states because an FA can only process one le�er at a time.
• Can we construct a more powerful machine?

q0 q1

q2

baa

all else

a, b

a,
b

Processing up to three characters at a time

1 / 14



Relaxing Restraints on Inputs

• We can build an FA that accepts only the word baa!
• 5 states because an FA can only process one le�er at a time.
• Can we construct a more powerful machine?

q0 q1
baa

The most basic of possible FA-like machines accepting only baa

But – we have a problem: what happens with baabb?

1 / 14



A Black-Hole State?

Up until this point, we had always specified a transition for every
single le�er from every single state
• Rules of FAs states we cannot stop reading input until we have

no more le�ers
• Do we want to specify an imaginary hell state for every FA?
• Alternatively introduce a new term to describe what happens

2 / 14



A Black-Hole State?

Up until this point, we had always specified a transition for every
single le�er from every single state
• Rules of FAs states we cannot stop reading input until we have

no more le�ers
• Do we want to specify an imaginary hell state for every FA?
• Alternatively introduce a new term to describe what happens

Definition
When an input string that has not been completely read reaches a
state (final or otherwise) that cannot leave because there is no
outgoing edge that it may follow, we say that the input (or the
machine) crashes at that state. Execution terminates and the input
must be rejected.

2 / 14



Example: A Double-Le�er Accepting Machine

q0 q1
aa, bb

a, b a, b

Problem
How many le�ers should we read at a time?

Discussion

Given baa we can tokenize it in the following ways:
• b-a-a
• b-aa
• ba-a

Only one of these yields admission into the final state (q1)

3 / 14



Example: A Double-Le�er Accepting Machine

q0 q1
aa, bb

a, b a, b

Problem
How many le�ers should we read at a time?

Discussion
Given baa we can tokenize it in the following ways:
• b-a-a
• b-aa
• ba-a

Only one of these yields admission into the final state (q1)

3 / 14



A Potential Problem

A string is accepted by a machine if there is some way it could be
processed so as to arrive at a final state.

q0

q1

q2

q3

ba

baa

ab

b

• We can accept baab in two di�erent ways!
• These are no longer Finite Automata
• We shall refer to these new machines as transition graphs

4 / 14



A Potential Problem

A string is accepted by a machine if there is some way it could be
processed so as to arrive at a final state.

q0

q1

q2

q3

ba

baa

ab

b

• We can accept baab in two di�erent ways!
• These are no longer Finite Automata
• We shall refer to these new machines as transition graphs

4 / 14



Transition Graphs

Definition
A transition graph, abbreviated TG, is a collection of three things:

1 A finite set of states, at least one of which is designated as the
start state and some (maybe none) of which are designated as
final states.

2 An alphabet Σ of possible input le�ers from which input strings
are formed.

3 A finite set of transitions (edge labels) that show how to go from
some states to some others, based on reading specified
substrings of input le�ers (possibly even the null string λ).

TGs were invented by John Myhill in 1957

A successful path through a transition graph is a series of edges
forming a path beginning at some start state and ending at a final
state. Concatenating the edges visited will yield the input string.

5 / 14



Example with λ transitions

q0

q1

q2

q3

abb

b

λ

aa

a

What language is accepted by this TG?

6 / 14



Multiple Start States

q2

q1

q3

q0 q4

λ

λ

λ

a

b

aba

• language-acceptor equivalent (the TG on the prior slide is
functionally equivalent as the TG on this slide)
• Important note: every FA is a TG, however every TG is not an FA

7 / 14



Multiple Start States

q2

q1

q3

q4

a

b

aba

• language-acceptor equivalent (the TG on the prior slide is
functionally equivalent as the TG on this slide)
• Important note: every FA is a TG, however every TG is not an FA

7 / 14



Looking at Simple Transition Graphs

1

q0

2

q0

3

q0

q1

q2

q3
abba

λ

baa

4

q0

5

q0 q1
λ

6

q0 q1
λ

λ

8 / 14



Looking at Simple Transition Graphs

1 accepts nothing (no final)

q0

2 accepts only λ

q0

3 accepts only λ, abba, baa

q0

q1

q2

q3
abba

λ

baa

4 accepts nothing (no start)

q0

5 accepts only λ

q0 q1
λ

6 accepts only λ

q0 q1
λ

λ

8 / 14



Examples – What do they do?

TG1:

q0 q1

b

a

a

b

TG2:

q0

q1 q2

q3 q4

a

b

a, b

b

a, b

a

TG3:

q0 q1

q2q3

b

aa

aa

b

b

b

TG4:

q0 q1

ab, ba

aa, bb

ab, ba

aa, bb

9 / 14



Infinite Paths?

�estion

Can we construct a TG which has infinitely many accept paths for a
finite-length string?

q0 q1 q2
a a

Solution

q0 q1 q2
a

λ

a

λ

10 / 14



Infinite Paths?

�estion

Can we construct a TG which has infinitely many accept paths for a
finite-length string?

q0 q1 q2
a a

Solution

q0 q1 q2
a

λ

a

λ

10 / 14



λ Circuits

�estion

How can we remove λ-transitions?

q0 q1 q2 q3
a

λ

λ

a

q0 q1 q2 q3
a

a, λ

b, λ

a

11 / 14



λ Circuits

�estion

How can we remove λ-transitions?

q0 q1 q2 q3
a

λ

λ

a

q0 q1 q2 q3
a

a, λ

b, λ

a

11 / 14



Generalized Transition Graphs (GTGs)

• We want to liberate! state-to-state transitions
• Allow the input to progress from one state to state

• Not with sequences of characters
• But with languages! L1, L2, . . . , Ln
• How do we want to represent the languages?

Definition
A generalized transition graph (GTG) is a collection of 3 things:

1 A finite set of states, of which as least one is a start state and
some (maybe none) are final states.

2 An alphabet Σ of input le�ers.

3 Directed edges connecting some pairs of states, each labeled
with a regular expression.

12 / 14



Examples of a GTG

Example 1 (demonstration):

q0 q1 q2

a∗

(ab + a)∗ (b + λ)

a∗

Example 2 (conversion):

q0 q1 q2
a, b a

b a, b

Loops == Kleene Star a, b == (a + b)

q0 q1 q2 q3
(a + b) b∗ a

(a + b)∗

13 / 14



Examples of a GTG

Example 1 (demonstration):

q0 q1 q2

a∗

(ab + a)∗ (b + λ)

a∗

Example 2 (conversion):

q0 q1 q2
a, b a

b a, b

Loops == Kleene Star a, b == (a + b)

q0 q1 q2 q3
(a + b) b∗ a

(a + b)∗

13 / 14



Non-Determinism

Or, how I learned to stopped worrying and love GTGs

• GTGs force us to face a deep, subtle, and disturbing fact:
• Just as ∗ and + in a regular expression represent a potential

multiplicity of choices, so does the possible multiplicity of paths
to be selected from a TG.

• In a GTG, the choices are static and dynamic
• We o�en have choices of edges at each state, each labeled with

an infinite language of alternatives
• The number of ways to transition from Qi to Qj might be∞

• We can’t forbid it (“Dread It. Run From It. Destiny Still Arrives.”)
• GTGs are non-deterministic. Human choice becomes a factor

in selecting the path; the machine doesn’t make all its own
determinations.

14 / 14


