slides originally by Dr. Richard Burns, modified by Dr. Stephanie Schwartz

NEAREST NEIGHBORS

CSCI 452: Data Mining

Similarity and Dissimilarity Measures

- Used by a number of data mining techniques:
 - Nearest neighbors
 - Clustering
 - Anomaly detection

How to measure "proximity"?

- <u>Proximity:</u> similarity or dissimilarity between two objects
 - Similarity: numerical measure of the degree to which two objects are alike
 - Usually in range [0,1]
 - 0 = no similarity
 - 1 = complete similarity
 - Dissimilarity: measure of the degree in which two objects are different

Similarity/Dissimilarity for Simple Attributes

p and q are the attribute values for two data

Attribute	Dissimilarity	Similarity	
Type			
Nominal	$d = \left\{ egin{array}{ccc} 0 & ext{if} \ p = q \ 1 & ext{if} \ p eq q \end{array} ight.$	$s = \left\{ egin{array}{ccc} 1 & ext{if } p = q \ 0 & ext{if } p eq q \end{array} ight.$	
Ordinal	$d = \frac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$	
Interval or Ratio	d = p - q	$s = -d, s = \frac{1}{1+d}$ or	

Dissimilarities between Data Objects

A common measure for the <u>proximity</u> between two objects is the <u>Euclidean Distance</u>:

$$d(x, y) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$

x and y are two data objects
n dimensions
Standardization necessary,
if scales differ

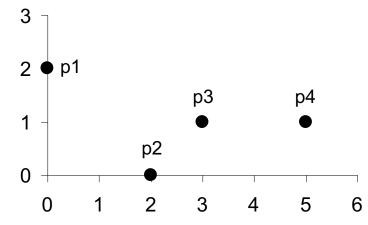
- In high school, we typically used this for calculating the distance between two objects, when there were only two dimensions.
- Defined for one-dimension, two-dimensions, three-dimensions, ..., any n-dimensional space

Distance Matrix

Once a distance metric is chosen, the proximity between all of the objects in the dataset can be computed

- Represented in a <u>distance matrix</u>
 - Pairwise distances between points

Distance Matrix



Euclidean Distance.

L2	p1	p2	p3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
p3	3.162	1.414	0	2
p4	5.099	3.162	2	0

point	X	У
p1	0	2
p2	2	0
p3	3	1
p4	5	1

Dissimilarities between Data Objects

- Typically the <u>Euclidean Distance</u> is used as a first choice when applying <u>Nearest Neighbors</u> and <u>Clustering</u>
- Other distance metrics:
 Generalized by the <u>Minkowski</u> distance metric:

n is the number of dimensions (attributes) and

 x_k and y_k are the kth attributes of

objects x and y.

$$d(x, y) = \sqrt{\sum_{k=1}^{n} |x_k - y_k|^r}^{1/r}$$

r is a parameter

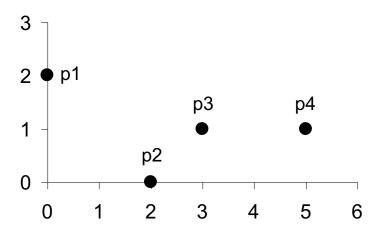
Dissimilarities between Data Objects

- Minkowski Distance Metric:
 - \square r = 1(L₁ norm)
 - "Manhattan, taxicab" Distance
 - **r** = 2 (L_2 norm)
 - Euclidean Distance
 - **I** $r \rightarrow \infty$. "supremum", L_{max} , L_{∞} norm distance.
 - the max difference between any components of the vectors

The r parameter should not be confused with the number of attributes/dimensions n

$$d(x, y) = \sqrt{\sum_{k=1}^{n} |x_k - y_k|^r}^{1/r}$$

Minkowski Distance

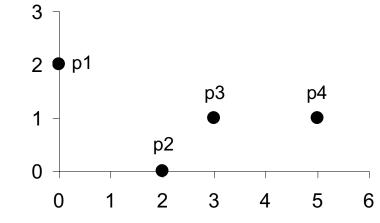


L1 nor	L1 norm distance. "Manhattan" Distance.				
L1	p1	p2	p3	p4	
p1	0	4	4	6	
p2	4	0	2	4	
p3	4	2	0	2	
p4	6	4	2	0	

L2 norm distance. Euclidean Distance.

L2	p1	p2	p3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
p3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Minkowski Distance



L_{∞}	p1	p2	p3	p4
p1	0	2	3	5
p2	2	0	1	3
p3	3	1	0	2
p4	5	3	2	0

point	X	У
p1	0	2
p2	2	0
p3	3	1
p4	5	1

Using Weights

- So far, all attributes treated equally when computing proximity
- In some situations: some features are more important than others
 - Decision up to the analyst
- Modified Minkowski distance definition to include weights:

$$d(x,y) = \sqrt{\sum_{k=1}^{n} \omega_k \left| x_k - y_k \right|^r}$$

Standardization

- In other situations, may want all features to be treated "equally"
 - One feature doesn't dominate another (income vs age)
- Common treatment to all variables:
 - Standardize each variable:
 - Mean = 0
 - Standard Deviation = 1

Eager Learner Models

□ So far in this course, we've performed prediction by:

- 1. Taking a dataset
- 2. Learning a model
- 3. Using model to classify/predict test instances
- Sometimes called <u>eager learners</u>:
 - Designed to learn a model that maps the input attributes to the class label, as soon as training data becomes available.

Lazy Learner Models

- Opposite strategy:
 - Delay process of modeling the training data, until it is necessary to classify/predict a test instance.
 - There is no "training" period, but each classification can be relatively expensive
 - Example:
 - Nearest neighbors

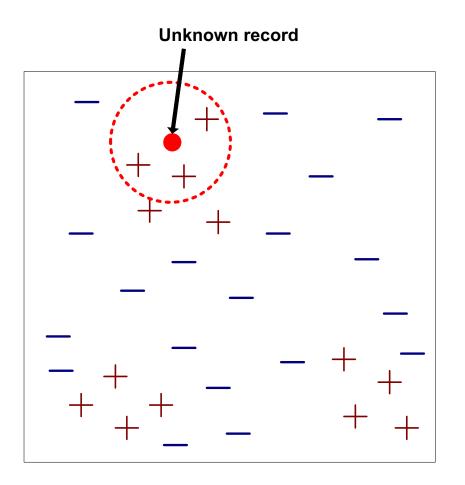
Nearest Neighbors

□ <u>k-nearest neighbors</u>

- $\mathbf{D} k =$ parameter, chosen by analyst
- For a given test instance, use the k "closest" points (nearest neighbors) for performing classification
 - "closest" points: defined by some proximity metric, such as Euclidean Distance

Rationale

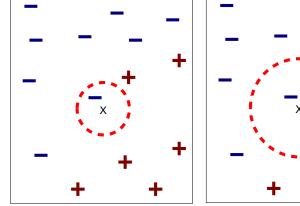
If it walks like a duck, quacks like a duck, then it's probably a duck Compute Test Record Distance Choose k of the Training Records "nearest" records

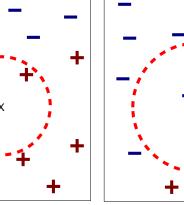


- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

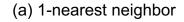
Definition of Nearest Neighbor

The k-nearest neighbors of a given example x are the k points that are closest to x.
Classification changes





(b) 2-nearest neighbor



(c) 3-nearest neighbor

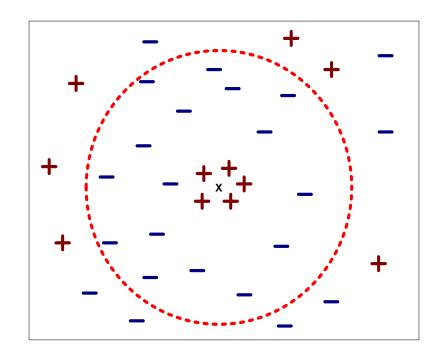
- Classification changes
 depending on the chosen
 k
- Majority Voting

Tie?

- Randomly choose classification.
- For binary problems, usually an odd k is used to avoid ties.

Choosing the right k

- If k is too small, sensitive to noise points in the training data
 - Susceptible to overfitting
- If k is too large, neighborhood may include points from other classes
 - Susceptible to misclassification



Algorithm

□ Can't have a CS class without pseudocode!

Algorithm 5.2 The k-nearest neighbor classification algorithm.

- 1: Let k be the number of nearest neighbors and D be the set of training examples. 2: for each test example $z = (\mathbf{x}', y')$ do
- 3: Compute $d(\mathbf{x}', \mathbf{x})$, the distance between z and every example, $(\mathbf{x}, y) \in D$.
- 4: Select $D_z \subseteq D$, the set of k closest training examples to z.

5:
$$y' = \operatorname{argmax} \sum_{(\mathbf{x}_i, y_i) \in D_z} I(v = y_i)$$

6: end for

Computational Issues?

- Computation can be costly if the number of training examples is large.
- Efficient indexing techniques are available to reduce the amount of computations needed when finding the nearest neighbors of a test example

Majority Voting

Simply majority: Every neighbor has the same impact on the classification:

Majority Voting:
$$y' = \arg \max_{v} \sum_{(x_i, y_i) \in D_z} I(v = y_i)$$

- Distance-weighted:
 - Far away neighbors have a weaker impact on the classification.

Distance-Weighted Voting:
$$y' = \underset{v}{\operatorname{argmax}} \sum_{(x_i, y_i) \in D_z} \omega_i \times I(v = y_i)$$

Scaling Issues

- Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
- Example, with three dimensions:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 90lb to 300lb
 - income of a person may vary from \$10K to \$1M

Income will dominate if these variables aren't standardized.

Final Thoughts on Nearest Neighbors

- Nearest-neighbors classification is part of a more general technique called <u>instance-based learning</u>
 - Use specific instances for prediction, rather than a model
- Nearest-neighbors is a <u>lazy learner</u>
 - Performing the classification can be relatively computationally expensive
 - (no model is learned up-front)

Classifier Comparison

Eager Learners

- Decision Trees, SVMs
- Model Building: potentially slow
- Classifying Test Instance: fast

Lazy Learners

- Nearest Neighbors
- Model Building: fast
 - (because there is none!)
- Classifying Test Instance: slow

Classifier Comparison

Eager Learners

Lazy Learners

- Decision Trees, SVMs
- finding a global model that fits the entire input space

- Nearest Neighbors
- classification decisions
 are made locally (small k values), are are more
 susceptible to noise

References

 Introduction to Data Mining, 1st edition, Tan et al.
 Data Mining and Business Analytics with R, 1st edition, Ledolter