```
<assign> -> <id> = <expr>
<id> -> A | B | C
<expr> -> <expr> + <term> | <term>
<term> -> <term> * <factor> | <factor>
<factor> -> ( <expr> ) | <id>
```

1. Rewrite the BNF grammar above to give + precedence over * and force + to be right associative.
2. Using the grammar provided above, show a parse tree and a leftmost derivation for each of the following statements:
a. $A=(A+B) * C$
b. $A=B *(C *(A+B))$
3. Prove that the following grammar is ambiguous:
```
<S> -> <A>
<A> -> <A> + <A> + <A> | <id>
<id> -> a | b | c
```

4. Consider the following grammar:
```
<S> -> <A> a <B> b
<A> -> <A> b | b
<B> -> a <B> | a
```

Which of the following sentences are in the language generated by this grammar?
a. baab
b. bbbab
c. bbaaaaa
d. bbaab
5. Write a grammar for the language consisting of strings that have n copies of the letter a followed by the same number of copies of the letter b , where $\mathrm{n}>0$.
6. Write an attribute grammar whose BNF basis is the grammar below but whose language rules are as follows: Data types cannot be mixed in expressions, but assignment statements need not have the same types on both sides of the assignment operator.

```
<assign> -> <var> = <expr>
<expr> -> <var>[2] + <var>[3] | <var>
<var> -> A | B | C
```

7. Consider the syntax rule and the semantic function below:
<bin_num> -> ' 0 ' | ' 1 ' | <bin_num> ' 0 ' | <bin_num> ' 1 '
$M_{\text {bin }}\left({ }^{\prime} 0^{\prime}\right)=0$
$M_{\text {bin }}{ }^{\prime} 1^{\prime}$ ') $=1$
$M_{\text {bin }}\left(<b i n _n u m>{ }^{\prime} 0^{\prime}\right)=2 * M_{\text {bin }}\left(<b i n _n u m>\right)$
$M_{\text {bin }}\left(<b i n _n u m>{ }^{\prime} 1^{\prime}\right)=2$ * $M_{\text {bin }}\left(<b i n _n u m>\right)+1$

What is the value of the sequence of characters '1001'? (Show your work)
8. Axiomatic Semantics

Compute the weakest precondition for each of the following:
a. $a=2$ * $(b-1)-1\{a>0\}$
b. $\mathrm{a}=2$ * $\mathrm{b}+1$;
$\mathrm{b}=\mathrm{a}-3 ;$
$\{\mathrm{b}<0\}$
Prove that the following program segment is correct:
c. $\{b>4\}$
c = b - 3;
a $=c+2$;
$\{a>=2\}$

