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STATISTICAL LEARNING

I CSCl 406: Data Mining



What is Statistical Learning?
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Shown are Sales vs TV, Radio and Newspaper, with a blue linear-regression line fit

separately to each.
Can we predict Sales using these three? Perhaps we can do better

using a model Sales = f(TV, Radio, Newspaper)



Statistical Learning — General Form
]

0 In general, assuming we have

o Observation of quantitative (numerical) response Y

0 Observation of p different predictors {X;, X, ..., X,}
O A relationship between Y and X

0 We can write this in the very general form:

Y=f(X)+¢



Statistical Learning — General Form

Y=f(X)+¢

0 Y is the target or response (in previous example: Sales)
0 f is unknown function of X = {X;, Xy, ..., X.}

01 f may involve more than one input variable (in previous example: Radio, TV,

Newspaper)

O € is a random error term

0 Independent of X

0 Has mean equal zero
0 f represents information that X provides about Y
0 Statistical learning refers to a set of approaches for estimating f




Why estimate f¢

0 Two usual objectives:

1. Prediction:

/

% With a good f we can make predictions of Y at new
points X = x

2. Inference / Descriptive:

R

% We can understand which components of X = (X1, X2, ..., Xp)
are important in explaining Y , and which are irrelevant. e.g.
Seniority and Years of Education have a big impact on Income,
but Marital Status typically does not.



Estimating f - Prediction
-5

0 In many situations, a set of X inputs are readily
available, but Y is not easily obtained.

Y=f(X)+¢

0 Since error term averages to zero, we can predict Y
using,
Y =f(X)

J represents estimate for f Y represents prediction for ¥



Estimating f - Prediction
-5

Y = f(X)
0 f often treated as a black box

O Not typically concerned with the exact form of f

® linear, quadratic, etc.

O We only care that our predictions are “near accurate”



Is there an ideal /(X )? In particular, what is a good value for
f(X) at any selected value of X, say X = 4?7 There can be
many Y values at X = 4. A good value i1s

f4)=EXY ) =4

E(Y X = 4) means expected value (average) of Y given X = 4.
This ideal f(x) = E(Y X = x) is called the regression function.

8/ 30



Estimating f — Types of Error

0 The accuracy of Y as a prediction for Y depends on:
1. Reducible error
2. lIrreducible error

0 f will not be perfect estimate for f

O reducible, because we can use more appropriate data mining
techniques



Estimating f — lIrreducible Error
e ——————
0 The accuracy of Y as a prediction for Y also depends on:

O lrreducible error
Y=f(X)+¢
0 €=Y —f(x)

o Even if we knew f(x), we would still make errors in prediction since
at each X=x there is a distribution of possible Y values
o Thus, variability associated with € also affects prediction accuracy

0 Cannot reduce error introduced by € no matter how well we
estimate f



Estimating f — lIrreducible Error
-5

0 Why is irreducible error larger than zero?

0 Quantity € may contain unmeasured variables that are
useful in predicting Y

o If we don’t measure them, f can’t use them for its prediction

0 Quantity € may also contain unmeasureable variation



Estimating f —
-5
0 Focus in this course is on techniques for estimating f

with the aim of minimizing reducible error.

0 The irreducible error will always provide an upper

bound on the accuracy of our predictions.

O In practice, the upper bound because of irreducible
error is almost always unknown.



Estimating f - Inference
-5

0 Rather than predicting Y based on observations of
X,

0 Goal is to understand the way that Y is affected as X =
{X;, X5, ..., X,} changes
0 Understand the relationship between X and Y

O f not treated as “black box” anymore, we need to
know its exact form



Estimating f - Inference
-5

0 May be interested in answering the following
questions:

O “Which predictors are associated with the response?”

m Often the case that only small fraction of the available
predictors are associated with Y

m |dentifying the few, important predictors



Estimating f - Inference
-5

0 May be interested in answering the following
questions:
0 “What is the relationship between the response and
each predictore”

B Some predictors may have a positive relationship with Y (or
vice versa, a negative relationship)

® Increasing the predictor is associated with increasing values
of Y



Estimating f - Inference
-5

0 May be interested in answering the following questions:

0 “Can f be summarized using a linear equation, or is the
relationship more complicated?”

m Historically, most methods for estimating f have taken a linear
form

m But often true relationship is more complicated

® Linear model may not accurately represent relationship between
input and output variables



How do we estimate f2
S

0 Most statistical learning methods classified as:
1. Parametric

2. Non-parametric



Parametric Methods

0 Assume that the functional form, or shape, of fis
linear in X

J(X) =P+ b X, +6,X, +...+0,X,

0 This is a linear model, for p predictors X = {X;, Xy, ..., X}

Model fitting involves estimating the parameters B, B; ..., B,
Only need to estimate p+1 coefficients,

O Rather than an entirely arbitrary p-dimensional function f(X)

0 Parametric: reduces the problem of estimating f down to estimating a set of

parameters




Non-parametric Methods
]

0 Do not make explicit assumptions about the
functional form of f (such that it is linear)



Parametric Methods Non-parametric Methods

0 Assumption of form of 0 Potential to accurately

model (perhaps linear) fit a wider range of

0 Possible that functional
estimate is very

different from the true f 0 Many, many more
o If so, won't fit data well observations needed

possible shapes for f

0 Only need to estimate 0 Complex models can
set of parameters lead to overfitting




Trade-Off Between Model Flexibility and
Model Interpretability

0 Some statistical models (e.g. linear models) are less flexible and
more restrictive.

0 Q: Why would be ever choose to use a more restrictive method
instead of a very flexible approach?

0 A: When inference is the goal, the restrictive models are much more
interpretable.

O In linear model, it is easy to understand relationship between Y and X;,
) O

0 For prediction, we might only be interested in accuracy and not the
interpretability of the model



Trade-Off Between Model Flexibility and

Model Interpretability
-5
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Trade-Off Between Model Flexibility and

Model Interpretability
-5

0 Even for prediction, where we might only care about
accuracy, more accurate predictions are sometimes
made from the less flexible methods

O Reason: overfitting in more complex models




Classification vs. Regression
.,
0 Given a dataset: instances with X set of
predictors/attributes, and single Y target attribute
o Classification:

0 Y Class label is discrete (usually categorical /nominal or
binary) attribute

0 Regression:
0 Y Class label is continuous

O Numeric prediction



Supervised Learning Approach to

Classification or Regression Problems
-5
0 Given a collection of records (training set)

O Each record contains predictor attributes as well as target
attribute

0 Learn a model (function f) that predicts the class value
(category or numeric value) based on the predictor
attributes

0 Goal: “previously unseen” instances should be assigned a
class as accurately as possible
O A test set is used to evaluate the model’s accuracy.




Training Set vs. Test Set

e
0 Overall dataset can be divided into:

1. Training set — used to build model

2. Test set — evaluates model



Tid ‘ Attrib1 Attrib2 Attrib3  Class Learn | ng

1 Yes Large 125K No algorithm
2 No Medium 100K No
3 No Small 70K No
4 Yes Medium 120K No |ndUCti0n
5 No Large 95K Yes
6 No Medium 60K No
7 | Yes Large 220K No Learn
8 |No Small 85K Yes Model
9 No Medium 75K No
10 | No Small 90K Yes
Training Set
Apply
Tid Attrib1  Attrib2  Attrib3  Class Model
11 No Small 55K ?
12 | Yes Medium 80K ?
13 | Yes Large 110K ? DedUCtion
14 | No Small 95K ?
15 | No Large 67K ?

Test Set

\



Model Evaluation on Test Set

(Classification) — Error Rate
]

0 Error Rate: proportion of mistakes that are made by

applying ourf model to the testing observations:
1 - VaN
=210 =9)
i=1

Observations in test set: {(x1,y1), «-+, (Xp¥n)}

)Aii is the predicted class for the ith record

I(y; = y,) is an indicator variable: equals 1 if y, =y, and 0 if y, = ,



Model Evaluation on Test Set

(Classification) — Confusion Matrix
]

0 Confusion Matrix: tabulation of counts of test records

correctly and incorrectly predicted by model

Class = 1 Class = 0

Class = 1 fi; f1o
Class = 0 for foo

(Confusion matrix for a 2-class problem.)



Model Evaluation on Test Set
(Classification) — Confusion Matrix

]
Class = 1 Class = 0
Class = 1 fil f1o
Class = 0 for oo
Accuracy = Number of correct prec.hc.tlons _ Jii + Joo
Total number of predictions  f,, + fi, + fo; + foo
Error rate = ~yumber of wrong predictions _ Jio + fou

Total number of predictions  f,, + f,, + fo1 + Joo

Most classification tasks seek models that attain the highest accuracy when applied to the test set.



Model Evaluation on Test Set

(Regression) — Mean Squared Error
]

0 Mean Squared Error: measuring the “quality of fit”

o will be small if the predicted responses are very close
to the true responses

MSE == (3,- }x))

Observations in test set: {(x1,y1), «-+, (Xp¥n)}

f (x,) 1s the predicted value for the ith record



A Problem

0 We already know that there is no one “best” data mining method or
statistical learning method.

O Depends on the characteristics of the data
0 We've introduced evaluation:

O We can quantify error (classification error, mean squared error) in hopes
of comparing accuracy of different models

0 We have datasets partitioned:
O Training set — model learns on this data
O Test set — model evaluated on this data

How well the model works on new data is what we really care about!



A Problem
R

0 Error rates on training set vs. testing set might be
drastically different.

0 There is no guarantee that the method with the smallest
training error rate will have the smallest testing error

rate.
0 Why?

O Statistical methods specifically estimate coefficients so as to
minimize the training set error



Overfitting

0 Overfitting: occurs when statistical model

“memorizes” the training set data
O very low error rate on training data

O higher error rate on test data

0 Model does not generalize to the overall problem

0 This is bad! We wish to avoid overfitting.



Learning Method Bias

0 Bias: the error introduced by modeling a real-life problem
(usually extremely complicated) by a much simpler problem

O Example: linear regression assumes a linear relationship between
the target variable Y and the predictor variables X

o It's unlikely that the relationship is exactly linear, so some bias will
be present in the model.

0 The more flexible (complex) a method is, the less bias it will
generally have.



Learning Method Variance
]

0 Variance: how much the learned model would

change if the training set was different

O Does changing a few observations in the training set,
dramatically affect the model?

® [deally, answer is no.

0 Generally, the more flexible (complex) a method is,
the more variance it has.



Bias-Variance Trade-Off

O Math proof! (beyond scope of this course)

0 Expected test set error can be decomposed into the sum of
the model’s variance, its squared bias, and the variance of
its error terms.

E(y, - f (x, ))* = Variance( f (x,))+[Bias(f(x, N + Variance(¢)

0 As a statistical method gets more complex, the bias will
decrease and the variance will increase.

0 Expected error on the test set may go up or down.
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Example: we wish to build a model that separates the dark-colored points from the
light-colored points.
Data Point Observations created by: Y=f(X)+&

Black line is simple, linear model f

Currently, some
classification error

* Low variance
* Bias present




More complex model (curvy line instead of linear)

® Zero classification
error for these data

points

* No linear model bias
* Higher Variance?




More data has been added

Re-train both models (linear line, and curvy line) in order to minimize error rate

Variance:
* Linear model doesn’t change much
* Curvy line significantly changes

Which model is better?




-5
0 Now that we know the definitions of “training set”
and “testing set”,

O A more complete view of the Data Mining process...



Data Mining Process

]
1. Engage in efficient data storage and data preprocessing

2. Select appropriate response variables

0 Decide on the number of variables that should be investigated
3. Screen data for outliers

O Address issues of missing values
4. Partition datasets into training and testing sets

o Sample large datasets that cannot easily be analyzed as a
whole



Data Mining Process (cont.)
]

5. Visualize data
O Box plots, histograms, etc.

6. Summarize data
0 Mean, median, sd, etc.

7. Apply appropriate data mining methods (decision trees)
8. Evaluate model on test set

5. Analyze, interpret results
0  Act on findings
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