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Shown are Sales vs TV, Radio and Newspaper, with a blue linear-regression line fit
separately to each.
Can we predict Sales using these three? Perhaps we can do better
using a model Sales ≈ f (TV, Radio, Newspaper)
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What is Statistical Learning?



Statistical Learning – General Form
¨ In general, assuming we have

¤ Observation of quantitative (numerical) response Y
¤ Observation of p different predictors {X1, X2, …, Xp}
¤ A relationship between Y and X 
¤ We can write this in the very general form:

Y = f (X)+ε



Statistical Learning – General Form

¨ Y is the target or response (in previous example: Sales)
¨ f is unknown function of X = {X1, X2, …, Xp}

¨ f may involve more than one input variable (in previous example: Radio, TV, 
Newspaper)

¨ ε is a random error term
¨ Independent of X
¨ Has mean equal zero

¨ f represents information that X provides about Y
¨ Statistical learning refers to a set of approaches for estimating f

Y = f (X)+ε



Why estimate f?
¨ Two usual objectives:

1. Prediction: 
v With a good f  we can make predictions of Y  at new 

points X = x

2. Inference / Descriptive: 
v We can understand which components of X = (X1, X2, . . . , Xp) 

are important in explaining Y , and which are irrelevant.  e.g.  
Seniority and Years of Education have a big impact on Income, 
but Marital Status typically does not.



Estimating f - Prediction
¨ In many situations, a set of X inputs are readily 

available, but Y is not easily obtained.
Y = f (X)+ε

¨ Since error term averages to zero, we can predict Y
using,

Ŷ = f̂ (X)

f̂  represents estimate for f Ŷ  represents prediction for Y



Estimating f - Prediction
Ŷ = f̂ (X)

¨ often treated as a black box
¤ Not typically concerned with the exact form of f

n linear, quadratic, etc.

¤ We only care that our predictions are “near accurate”

f̂
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Is there an ideal f (X )? In particular, what is a good value for 
f (X ) at any selected value of X , say X = 4? There can be 
many Y values at X = 4. A good value is

f (4) = E (Y |X = 4)

E (Y |X = 4) means expected value (average) of Y given X = 4.

This ideal f (x ) = E (Y |X = x ) is called the regression function.

y

●
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Estimating f – Types of Error

¨ The accuracy of    as a prediction for Y depends on:
1. Reducible error
2. Irreducible error

Ŷ

¨ will not be perfect estimate for f
¤ reducible, because we can use more appropriate data mining 

techniques

f̂



Estimating f – Irreducible Error
¨ The accuracy of    as a prediction for Y also depends on:

¤ Irreducible error
Ŷ

Y = f (X)+ε

¨ ε = Y – f(x)
¤ Even if we knew f(x), we would still make errors in prediction since 

at each X=x there is a distribution of possible Y values
¤ Thus, variability associated with ε also affects prediction accuracy

¨ Cannot reduce error introduced by ε no matter how well we 
estimate f



Estimating f – Irreducible Error
¨ Why is irreducible error larger than zero?

¨ Quantity ε may contain unmeasured variables that are 
useful in predicting Y
¤ If we don’t measure them, f can’t use them for its prediction

¨ Quantity ε may also contain unmeasureable variation



Estimating f –
¨ Focus in this course is on techniques for estimating f

with the aim of minimizing reducible error.
¨ The irreducible error will always provide an upper 

bound on the accuracy of our predictions.
¤ In practice, the upper bound because of irreducible 

error is almost always unknown.



Estimating f - Inference
¨ Rather than predicting Y based on observations of 

X,
¨ Goal is to understand the way that Y is affected as X = 

{X1, X2, …, Xp} changes
¨ Understand the relationship between X and Y

¨ not treated as “black box” anymore, we need to 
know its exact form
f̂



Estimating f - Inference
¨ May be interested in answering the following 

questions:
¤ “Which predictors are associated with the response?”

n Often the case that only small fraction of the available 
predictors are associated with Y

n Identifying the few, important predictors



Estimating f - Inference
¨ May be interested in answering the following 

questions:
¤ “What is the relationship between the response and 

each predictor?”
n Some predictors may have a positive relationship with Y (or 

vice versa, a negative relationship)
n Increasing the predictor is associated with increasing values 

of Y



Estimating f - Inference
¨ May be interested in answering the following questions:

¤ “Can be summarized using a linear equation, or is the 
relationship more complicated?”
n Historically, most methods for estimating f have taken a linear

form
n But often true relationship is more complicated
n Linear model may not accurately represent relationship between 

input and output variables

f̂



How do we estimate f?
¨ Most statistical learning methods classified as:

1. Parametric
2. Non-parametric



Parametric Methods
¨ Assume that the functional form, or shape, of f is 

linear in X

f (X) = β0 +β1X1 +β2X2 +...+βpXp

¨ This is a linear model, for p predictors X = {X1, X2, …, Xp}
¨ Model fitting involves estimating the parameters β0, β1, …, βp

¨ Only need to estimate p+1 coefficients, 
¤ Rather than an entirely arbitrary p-dimensional function f(X)

¨ Parametric: reduces the problem of estimating f down to estimating a set of 
parameters



Non-parametric Methods
¨ Do not make explicit assumptions about the 

functional form of f (such that it is linear)



¨ Assumption of form of 
model (perhaps linear)

¨ Possible that functional 
estimate is very 
different from the true f
¤ If so, won’t fit data well

¨ Only need to estimate 
set of parameters

¨ Potential to accurately 
fit a wider range of 
possible shapes for f

¨ Many, many more 
observations needed

¨ Complex models can 
lead to overfitting

Parametric Methods Non-parametric Methods



Trade-Off Between Model Flexibility and 
Model Interpretability
¨ Some statistical models (e.g. linear models) are less flexible and 

more restrictive.
¨ Q: Why would be ever choose to use a more restrictive method 

instead of a very flexible approach?
¨ A: When inference is the goal, the restrictive models are much more 

interpretable.
¤ In linear model, it is easy to understand relationship between Y and X1, 

X2, …
¨ For prediction, we might only be interested in accuracy and not the 

interpretability of the model



Trade-Off Between Model Flexibility and 
Model Interpretability

Model Flexibility
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Linear Models

Decision Trees

Support Vector Machines



Trade-Off Between Model Flexibility and 
Model Interpretability

¨ Even for prediction, where we might only care about 
accuracy, more accurate predictions are sometimes 
made from the less flexible methods
¤ Reason: overfitting in more complex models



Classification vs. Regression
¨ Given a dataset: instances with X set of 

predictors/attributes, and single Y target attribute
¨ Classification:

¤ Y Class label is discrete (usually categorical/nominal or 
binary) attribute

¨ Regression:
¤ Y Class label is continuous
¤ Numeric prediction



Supervised Learning Approach to 
Classification or Regression Problems
¨ Given a collection of records (training set)

¤ Each record contains predictor attributes as well as target 
attribute

¨ Learn a model (function f) that predicts the class value 
(category or numeric value) based on the predictor 
attributes

¨ Goal: “previously unseen” instances should be assigned a 
class as accurately as possible
¤ A test set is used to evaluate the model’s accuracy.



Training Set vs. Test Set
¨ Overall dataset can be divided into:

1. Training set – used to build model
2. Test set – evaluates model



Apply 
Model

Induction

Deduction

Learn 
Model

Model

Tid Attrib1 Attrib2 Attrib3 Class 

1 Yes Large 125K No 

2 No Medium 100K No 

3 No Small 70K No 

4 Yes Medium 120K No 

5 No Large 95K Yes 

6 No Medium 60K No 

7 Yes Large 220K No 

8 No Small 85K Yes 

9 No Medium 75K No 

10 No Small 90K Yes 
10 

 

Tid Attrib1 Attrib2 Attrib3 Class 

11 No Small 55K ? 

12 Yes Medium 80K ? 

13 Yes Large 110K ? 

14 No Small 95K ? 

15 No Large 67K ? 
10 

 

Test Set

Learning
algorithm

Training Set



Model Evaluation on Test Set
(Classification) – Error Rate

1
n

I(yi ≠ ŷi
i=1

n

∑ )

¨ Error Rate: proportion of mistakes that are made by 
applying our   model to the testing observations:f̂

Observations in test set: {(x1,y1), …, (xn,yn)}

ŷi  is the predicted class for the ith record
I(yi ≠ ŷi ) is an indicator variable: equals 1 if yi ≠ ŷi  and 0 if yi = ŷi



Model Evaluation on Test Set
(Classification) – Confusion Matrix

¨ Confusion Matrix: tabulation of counts of test records 
correctly and incorrectly predicted by model

Predicted Class

Class = 1 Class = 0

Actual Class
Class = 1 f11 f10
Class = 0 f01 f00

(Confusion matrix for a 2-class problem.)



Model Evaluation on Test Set
(Classification) – Confusion Matrix

Predicted Class

Class = 1 Class = 0

Actual Class
Class = 1 f11 f10
Class = 0 f01 f00

Accuracy = Number of correct predictions
Total number of predictions

=
f11 + f00

f11 + f10 + f01 + f00

Error rate = Number of wrong predictions
Total number of predictions

=
f10 + f01

f11 + f10 + f01 + f00

Most classification tasks seek models that attain the highest accuracy when applied to the test set.



Model Evaluation on Test Set
(Regression) – Mean Squared Error

MSE = 1
n

(yi − f̂ (xi )
i=1

n

∑ )2

¨ Mean Squared Error: measuring the “quality of fit”
¤ will be small if the predicted responses are very close 

to the true responses

Observations in test set: {(x1,y1), …, (xn,yn)}

f̂ (xi ) is the predicted value for the ith record



A Problem
¨ We already know that there is no one “best” data mining method or 

statistical learning method. 
¤ Depends on the characteristics of the data

¨ We’ve introduced evaluation: 
¤ We can quantify error (classification error, mean squared error) in hopes 

of comparing accuracy of different models
¨ We have datasets partitioned:

¤ Training set – model learns on this data
¤ Test set – model evaluated on this data

How well the model works on new data is what we really care about!



A Problem
¨ Error rates on training set vs. testing set might be 

drastically different.
¨ There is no guarantee that the method with the smallest 

training error rate will have the smallest testing error 
rate.

¨ Why?
¤ Statistical methods specifically estimate coefficients so as to  

minimize the training set error



Overfitting
¨ Overfitting: occurs when statistical model 

“memorizes” the training set data
¤ very low error rate on training data
¤ higher error rate on test data

¨ Model does not generalize to the overall problem
¨ This is bad! We wish to avoid overfitting.



Learning Method Bias
¨ Bias: the error introduced by modeling a real-life problem 

(usually extremely complicated) by a much simpler problem
¤ Example: linear regression assumes a linear relationship between 

the target variable Y and the predictor variables X
¤ It’s unlikely that the relationship is exactly linear, so some bias will 

be present in the model.

¨ The more flexible (complex) a method is, the less bias it will 
generally have.



Learning Method Variance
¨ Variance: how much the learned model would 

change if the training set was different 
¤ Does changing a few observations in the training set, 

dramatically affect the model?
n Ideally, answer is no.

¨ Generally, the more flexible (complex) a method is, 
the more variance it has.



Bias-Variance Trade-Off

¨ As a statistical method gets more complex, the bias will 
decrease and the variance will increase.

¨ Expected error on the test set may go up or down.

E(y0 − f̂ (x0 ))
2 =Variance( f̂ (x0 ))+[Bias( f (x0 ))]

2 +Variance(ε)

¨ Math proof! (beyond scope of this course)
¨ Expected test set error can be decomposed into the sum of 

the model’s variance, its squared bias, and the variance of 
its error terms.
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Training Set

Error Rate on
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Underfitting

Optimal Level of
Model Complexity

Overfitting

Figure 5.2 The optimal level of model complexity is at the minimum error rate on the
validation set.

training set continues to fall in a monotone fashion. However, as the model complexity
increases, the validation set error rate soon begins to flatten out and increase because
the provisional model has memorized the training set rather than leaving room for
generalizing to unseen data. The point where the minimal error rate on the validation
set is encountered is the optimal level of model complexity, as indicated in Figure 5.2.
Complexity greater than this is considered to be overfitting; complexity less than this
is considered to be underfitting.

BIAS–VARIANCE TRADE-OFF

Suppose that we have the scatter plot in Figure 5.3 and are interested in constructing
the optimal curve (or straight line) that will separate the dark gray points from the
light gray points. The straight line in has the benefit of low complexity but suffers
from some classification errors (points ending up on the wrong side of the line).

In Figure 5.4 we have reduced the classification error to zero but at the cost of
a much more complex separation function (the curvy line). One might be tempted to
adopt the greater complexity in order to reduce the error rate. However, one should
be careful not to depend on the idiosyncrasies of the training set. For example, sup-
pose that we now add more data points to the scatter plot, giving us the graph in
Figure 5.5.

Note that the low-complexity separator (the straight line) need not change very
much to accommodate the new data points. This means that this low-complexity
separator has low variance. However, the high-complexity separator, the curvy line,
must alter considerably if it is to maintain its pristine error rate. This high degree of
change indicates that the high-complexity separator has a high variance.
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Figure 5.3 Low-complexity separator with high error rate.

Figure 5.4 High-complexity separator with low error rate.

Figure 5.5 With more data: low-complexity separator need not change much; high-
complexity separator needs much revision.

Example: we wish to build a model that separates the dark-colored points from the 
light-colored points. 

Black line is simple, linear model

• Low variance
• Bias present

Currently, some 
classification error

Data Point Observations created by: Y=f(X)+ε

f̂
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Figure 5.3 Low-complexity separator with high error rate.

Figure 5.4 High-complexity separator with low error rate.

Figure 5.5 With more data: low-complexity separator need not change much; high-
complexity separator needs much revision.

More complex model (curvy line instead of linear)

Zero classification 
error for these data 
points

• No linear model bias
• Higher Variance?



More data has been added 
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Figure 5.3 Low-complexity separator with high error rate.

Figure 5.4 High-complexity separator with low error rate.

Figure 5.5 With more data: low-complexity separator need not change much; high-
complexity separator needs much revision.

Re-train both models (linear line, and curvy line) in order to minimize error rate

Variance:
• Linear model doesn’t change much
• Curvy line significantly changes

Which model is better?



¨ Now that we know the definitions of “training set” 
and “testing set”,
¤ A more complete view of the Data Mining process…



Data Mining Process
1. Engage in efficient data storage and data preprocessing
2. Select appropriate response variables

¤ Decide on the number of variables that should be investigated

3. Screen data for outliers
¤ Address issues of missing values

4. Partition datasets into training and testing sets
¤ Sample large datasets that cannot easily be analyzed as a 

whole



Data Mining Process (cont.)
5. Visualize data

¤ Box plots, histograms, etc.
6. Summarize data

¤ Mean, median, sd, etc.
7. Apply appropriate data mining methods (decision trees)
8. Evaluate model on test set
9. Analyze, interpret results

¤ Act on findings
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