slides originally by Dr. Richard Burns, modified by Dr. Stephanie Schwartz

STATISTICAL LEARNING

CSCI 406: Data Mining

What is Statistical Learning?

Shown are Sales vs TV, Radio and Newspaper, with a blue linear-regression line fit separately to each.

Can we predict Sales using these three? Perhaps we can do better using a model Sales $\approx f(\text{TV}, \text{Radio}, \text{Newspaper})$

Statistical Learning – General Form

- □ In general, assuming we have
 - Observation of quantitative (numerical) <u>response</u> Y
 - Observation of p different predictors $\{X_1, X_2, ..., X_p\}$
 - A relationship between Y and X
 - We can write this in the very general form:

$$Y = f(X) + \varepsilon$$

Statistical Learning – General Form

$$Y = f(X) + \varepsilon$$

- Y is the target or response (in previous example: Sales)
- $\Box f \text{ is unknown function of } X = \{X_1, X_2, \dots, X_p\}$
 - □ f may involve more than one input variable (in previous example: Radio, TV, Newspaper)
- ε is a random error term
 - □ Independent of X
 - Has mean equal zero
- \Box f represents information that X provides about Y
- □ <u>Statistical learning</u> refers to a set of approaches for estimating *f*

Why estimate f?

- Two usual objectives:
 - 1. Prediction:
 - With a good f we can make predictions of Y at new points X = x
 - 2. Inference / Descriptive:
 - We can understand which components of X = (X1, X2, ..., Xp) are important in explaining Y, and which are irrelevant. e.g. Seniority and Years of Education have a big impact on Income, but Marital Status typically does not.

Estimating *f* - Prediction

In many situations, a set of X inputs are readily available, but Y is not easily obtained.

$$Y = f(X) + \varepsilon$$

Since error term averages to zero, we can predict Y using,

$$\hat{Y} = \hat{f}(X)$$

 \hat{f} represents estimate for f \hat{Y} represents prediction for Y

$$\hat{Y} = \hat{f}(X)$$

- \square \hat{f} often treated as a black box
 - Not typically concerned with the exact form of f
 - linear, quadratic, etc.
 - We only care that our predictions are "near accurate"

Is there an ideal f(X)? In particular, what is a good value for f(X) at any selected value of X, say X = 4? There can be many Y values at X = 4. A good value is

f(4) = E(Y | X = 4)

E(Y | X = 4) means expected value (average) of Y given X = 4. This ideal f(x) = E(Y | X = x) is called the *regression function*.

Estimating f – Types of Error

 \Box The accuracy of \hat{Y} as a prediction for Y depends on:

- 1. Reducible error
- 2. Irreducible error
- \square \hat{f} will not be perfect estimate for f
 - reducible, because we can use more appropriate data mining techniques

Estimating f – Irreducible Error

The accuracy of Ŷ as a prediction for Y also depends on:
 Irreducible error

$$Y = f(X) + \varepsilon$$

 $\Box \ \varepsilon = Y - f(x)$

- Even if we knew f(x), we would still make errors in prediction since at each X=x there is a distribution of possible Y values
- **□** Thus, variability associated with ε also affects prediction accuracy
- **Cannot reduce error introduced by** ε no matter how well we estimate *f*

Estimating f – Irreducible Error

Why is irreducible error larger than zero?

- Quantity & may contain unmeasured variables that are useful in predicting Y
 - \square If we don't measure them, f can't use them for its prediction
- \square Quantity ϵ may also contain unmeasureable variation

Estimating f –

- Focus in this course is on techniques for estimating f with the aim of minimizing <u>reducible error</u>.
- The <u>irreducible error</u> will always provide an upper bound on the accuracy of our predictions.
 - In practice, the upper bound because of irreducible error is almost always unknown.

- Rather than predicting Y based on observations of X,
- Goal is to understand the way that Y is affected as $X = {X_1, X_2, ..., X_p}$ changes
 - Understand the relationship between X and Y
- \hat{f} not treated as "black box" anymore, we need to know its exact form

- May be interested in answering the following questions:
 - "Which predictors are associated with the response?"
 - Often the case that only small fraction of the available predictors are associated with Y
 - Identifying the few, important predictors

- May be interested in answering the following questions:
 - "What is the relationship between the response and each predictor?"
 - Some predictors may have a <u>positive relationship</u> with Y (or vice versa, a <u>negative relationship</u>)
 - Increasing the predictor is associated with increasing values of Y

- May be interested in answering the following questions:
 "Can f̂ be summarized using a linear equation, or is the relationship more complicated?"
 - Historically, most methods for estimating f have taken a <u>linear</u> form
 - But often true relationship is more complicated
 - Linear model may not accurately represent relationship between input and output variables

How do we estimate f?

Most statistical learning methods classified as:

- 1. Parametric
- 2. Non-parametric

Parametric Methods

Assume that the functional form, or shape, of f is linear in X

$$f(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_p X_p$$

- □ This is a <u>linear model</u>, for p predictors $X = \{X_1, X_2, ..., X_p\}$
- □ Model fitting involves estimating the parameters $\beta_{0,}\beta_{1,}$..., β_{p}
- \Box Only need to estimate p+1 coefficients,
 - **\square** Rather than an entirely arbitrary *p*-dimensional function f(X)
- Parametric: reduces the problem of estimating f down to estimating a set of parameters

Non-parametric Methods

Do <u>not</u> make explicit assumptions about the functional form of f (such that it is *linear*)

Non-parametric Methods

- Assumption of form of model (perhaps linear)
- Possible that functional estimate is very different from the true f
 - If so, won't fit data well
- Only need to estimate set of parameters

- Potential to accurately
 - fit a wider range of
 - possible shapes for f
- Many, many more observations needed
- Complex models can lead to <u>overfitting</u>

Trade-Off Between Model Flexibility and Model Interpretability

- Some statistical models (e.g. linear models) are less flexible and more restrictive.
- Q: Why would be ever choose to use a more restrictive method instead of a very flexible approach?
- A: When inference is the goal, the restrictive models are much more interpretable.
 - In linear model, it is easy to understand relationship between Y and X_1 , X_2 , ...
- For prediction, we might only be interested in accuracy and not the interpretability of the model

Trade-Off Between Model Flexibility and Model Interpretability

Trade-Off Between Model Flexibility and Model Interpretability

Even for prediction, where we might only care about accuracy, more accurate predictions are sometimes made from the less flexible methods

Reason: <u>overfitting</u> in more complex models

Classification vs. Regression

Given a dataset: instances with X set of predictors/attributes, and single Y target attribute

Classification:

 Y Class label is discrete (usually categorical/nominal or binary) attribute

□ <u>Regression</u>:

- Y Class label is continuous
- Numeric prediction

Supervised Learning Approach to Classification or Regression Problems

- □ Given a collection of records (training set)
 - Each record contains <u>predictor attributes</u> as well as <u>target</u> <u>attribute</u>
- Learn a <u>model</u> (function f) that predicts the class value (category or numeric value) based on the predictor attributes
- Goal: "previously unseen" instances should be assigned a class as accurately as possible
 - A <u>test set</u> is used to evaluate the model's accuracy.

Training Set vs. Test Set

Overall dataset can be divided into:

- 1. Training set used to build model
- 2. Test set evaluates model

Tid	Attrib1	Attrib2	Attrib3	Class
1	Yes	Large	125K	No
2	No	Medium	100K	No
3	No	Small	70K	No
4	Yes	Medium	120K	No
5	No	Large	95K	Yes
6	No	Medium	60K	No
7	Yes	Large	220K	No
8	No	Small	85K	Yes
9	No	Medium	75K	No
10	No	Small	90K	Yes
Training Set				

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

Model Evaluation on Test Set (Classification) – Error Rate

□ Error Rate: proportion of mistakes that are made by applying our \hat{f} model to the testing observations:

$$\frac{1}{n}\sum_{i=1}^{n}I(y_{i}\neq\hat{y}_{i})$$

Observations in test set: $\{(x_1,y_1), \ldots, (x_n,y_n)\}$

 \hat{y}_i is the predicted class for the *i*th record $I(y_i \neq \hat{y}_i)$ is an indicator variable: equals 1 if $y_i \neq \hat{y}_i$ and 0 if $y_i = \hat{y}_i$

Model Evaluation on Test Set (Classification) – Confusion Matrix

Confusion Matrix: tabulation of counts of test records correctly and incorrectly predicted by model

		Predicted Class	
		Class = 1	Class = 0
Actual Class	Class = 1	f ₁₁	f ₁₀
	Class = 0	<i>f</i> ₀₁	f _{oo}

(Confusion matrix for a 2-class problem.)

Model Evaluation on Test Set (Classification) – Confusion Matrix

		Predicted Class	
		Class = 1	Class = 0
Actual Class	Class = 1	f ₁₁	f ₁₀
	Class = 0	<i>f</i> ₀₁	f ₀₀

Accuracy =
$$\frac{\text{Number of correct predictions}}{\text{Total number of predictions}} = \frac{f_{11} + f_{00}}{f_{11} + f_{10} + f_{01} + f_{00}}$$

Error rate = $\frac{\text{Number of wrong predictions}}{\text{Total number of predictions}} = \frac{f_{10} + f_{01}}{f_{11} + f_{10} + f_{01} + f_{00}}$

Most classification tasks seek models that attain the highest accuracy when applied to the test set.

Model Evaluation on Test Set (Regression) – Mean Squared Error

Mean Squared Error: measuring the "quality of fit"
 will be small if the predicted responses are very close to the true responses

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

Observations in test set: $\{(x_1,y_1), \ldots, (x_n,y_n)\}$

 $\hat{f}(x_i)$ is the predicted value for the *i*th record

A Problem

- We already know that there is no one "best" data mining method or statistical learning method.
 - Depends on the characteristics of the data
- We've introduced evaluation:
 - We can quantify error (classification error, mean squared error) in hopes of comparing accuracy of different models
- We have datasets partitioned:
 - Training set model learns on this data
 - Test set model evaluated on this data

How well the model works on new data is what we really care about!

A Problem

- Error rates on training set vs. testing set might be drastically different.
- There is no guarantee that the method with the smallest training error rate will have the smallest testing error rate.
- □ Why?
 - Statistical methods specifically estimate coefficients so as to minimize the training set error

Overfitting

- Overfitting: occurs when statistical model "memorizes" the training set data
 - very low error rate on training data
 - higher error rate on test data
- □ Model <u>does not generalize</u> to the overall problem
- □ This is bad! We wish to avoid overfitting.

Learning Method Bias

- <u>Bias</u>: the error introduced by modeling a real-life problem (usually extremely complicated) by a much simpler problem
 - Example: linear regression assumes a linear relationship between the target variable Y and the predictor variables X
 - It's unlikely that the relationship is exactly linear, so some bias will be present in the model.
- The more flexible (complex) a method is, the less bias it will generally have.

Learning Method Variance

- Variance: how much the learned model would change if the training set was different
 - Does changing a few observations in the training set, dramatically affect the model?
 - Ideally, answer is no.
- Generally, the more flexible (complex) a method is, the more variance it has.

Bias-Variance Trade-Off

- □ Math proof! (beyond scope of this course)
- Expected test set error can be decomposed into the sum of the model's variance, its squared bias, and the variance of its error terms.

 $E(y_0 - \hat{f}(x_0))^2 = Variance(\hat{f}(x_0)) + [Bias(f(x_0))]^2 + Variance(\varepsilon)$

- As a statistical method gets more complex, the bias will decrease and the variance will increase.
- Expected error on the test set may go up or down.

Example: we wish to build a model that separates the dark-colored points from the light-colored points.

Data Point Observations created by: $Y=f(X)+\varepsilon$

More complex model (curvy line instead of linear)

Zero classification error for these data points

- No linear model bias
- Higher Variance?

More data has been added

Re-train both models (linear line, and curvy line) in order to minimize error rate

Variance:

- Linear model doesn't change much
- Curvy line significantly changes

Which model is better?

- Now that we know the definitions of "training set" and "testing set",
 - A more complete view of the Data Mining process...

Data Mining Process

- 1. Engage in efficient data storage and data preprocessing
- 2. Select appropriate response variables
 - Decide on the number of variables that should be investigated
- 3. Screen data for outliers
 - Address issues of missing values
- 4. Partition datasets into training and testing sets
 - Sample large datasets that cannot easily be analyzed as a whole

Data Mining Process (cont.)

- 5. Visualize data
 - Box plots, histograms, etc.
- 6. Summarize data
 - Mean, median, sd, etc.
- 7. Apply appropriate data mining methods (decision trees)
- 8. Evaluate model on test set
- 9. Analyze, interpret results
 - Act on findings

References

- □ Introduction to Data Mining, 1st edition, Tan et al.
- Data Mining and Business Analytics in R, 1st edition, Ledolter
- An Introduction to Statistical Learning, 1st edition, James et al.
- Discovering Knowledge in Data, 2nd edition, Larose et al.