
CSCI 340: Computational Models

Turing Machine Languages

Chapter 23 Department of Computer Science

Languages: their Definers and Acceptors

• Regular languages
Defined via regular expressions
Accepted by Finite Automata
• Context-Free languages

Defined via context free grammars
Accepted by Push Down Automata
• ??? languages

Defined via ???
Accepted by Turing Machines

Well, what goes above?

1 / 22

Languages Accepted by Turing Machines

Definition
A language L defined over the alphabet Σ is called recursively
enumerable if there is a Turing Machine T that accepts every word
in L and either rejects (crashes) or loops forever for every word in the
language L′ (the complement of L). O�en abbreviated r.e.

accept(T) = L

reject(T) + loop(T) = L′

Remember the turing machine that “looped” forever on a regular
language defined by the regular expression (a + b)∗aa(a + b)∗ ?

accept(T) = all words with aa

reject(T) = strings without aa ending in a

loop(T) = string all without aa ending in b, or λ
2 / 22

Languages Accepted by Turing Machines

Definition
A language L defined over the alphabet Σ is called recursive if there
is a Turing Machine T that accepts every word in L and rejects
(crashes) for every word in the language L′ (the complement of L).

accept(T) = L

reject(T) = L′

loop(T) = ∅

Example

START HALT
(a, a, R)

3 / 22

Operations on Recursive Languages

Theorem
If the language L is recursive, then its complement (L′) is also recursive.
In other words, the recursive languages are closed under
complementation.

Proof.

• No word will loop when “run” on the machine
• Convert the Turing Machine to a Post Machine
• Introduce a REJECT state and have all unaccounted

deterministic paths lead to this new REJECT state
• Relabel all REJECT states as ACCEPT and all ACCEPT states as

REJECT
• This new machine ACCEPTs everything the original machine

REJECTed and REJECTs everything the original machine
ACCEPTed

�
4 / 22

Recursively Enumerable Languages

Theorem
If L is recursively enumerable (r.e.) and L′ is also recursively enumerable,
then L is recursive

A part of the Proof...

Assuming there is a TM T1 that accepts L and a TM T2 that accepts L′.
We then construct T2

′ such that:

L′ = accept(T2) = reject(T2
′)

loop(T2) ⊂ loop(T2
′)

reject(T2) ⊂ loop(T2
′)

We then construct T1
′ such that:

accept(T1
′) = L = loop(T2

′)

loop(T1
′) = L′ = reject(T2

′)

5 / 22

Union

Theorem
If T1 and T2 are TMs, there exists a TM, T3 such that

accept(T3) = accept(T1) + accept(T2)

Proof.

• Make both TMs loop instead of crash
• Nothing stops the two machines from running in alternation

given the construction algorithm fully outlined in the prior proof

�

6 / 22

Intersection

Theorem
The intersection of two recursively enumerable languages is also
recursively enumerable

Proof.
Assume TM1 is the first TM and TM2 is the second TM

1 Build a TM preprocessor that takes a two-track TAPE and copies
from track 1 to track 2. Always start on TM1

2 Convert TM1 to a 2-track TAPE doing all of its processing but
referring only to the first track. Change HALT of TM1 to a state
that rewinds the TAPE HEAD to the first cell and branch to the
START of TM2

3 Convert TM2 into 2-track TAPE doing all of its processing but
referring only to the second track.

�

7 / 22

The Encoding of Turing Machines

We can represent Turing Machines as tables rather than as a picture

START (1) 3 HALT (2)

(b, b, R)

(a, b, R)

(a, b, L)

(∆, b, L)

From To Read Write Move

1 1 b b R

1 3 a b R

3 3 a b L

3 2 ∆ b L

8 / 22

Coding a Turing Machine

Consider the general row:

From To Read Write Move

X1 X2 X3 X4 X5

• X1, X2 are numbers
• X3, X4 ∈ {a b #}

• X5 ∈ {L R}

Encoding the row:
• X1 and X2 get encoded as: aX1baX2b
• X3 and X4 get mapped to one of the four strings:

a→ aa b→ ab ∆→ ba #→ bb
• X5 is encoded as a if it’s L and b if it’s R
• Finally, concatenate all parts together

9 / 22

Coding Example

From To Read Write Move

6 2 b a L

• X1, X2 = a6ba2b = aaaaaa b aa b
• X3 = “b” = ab
• X4 = “a” = aa
• X5 = “L” = a
• Encoding: aaaaaa b aa b ab aa a

Every row is a string of a’s and b’s that is defined by the RE:

a+ba+b(a + b)5
(at least one a) b (at least one a) b (five le�ers)

10 / 22

Code Word Language

From To Read Write Move Code for Each Row

1 1 b b R ababababb

1 3 a b R abaaabaaabb

3 3 a b L aaabaaabaaaba

3 2 ∆ b L aaabaabbaaba

One code word for the entire machine is:

ababababbabaaabaaabbaaabaaabaaabaaaabaabbaaba

But this isn’t the only code for the machine because the “order” of
the rows in the table isn’t rigid.

CWL = the language defined by (a+ba+b(a + b)5)∗

11 / 22

A Non-Recursively Enumerable Language

• The code word for a TM contains all the information of the TM
• Since it’s just composed of a’s and b’s it could be used as input
• What if we run the TM with the code word as input?

Definition
The Language ALAN is defined as the following:

ALAN = { all the words in CWL that are not accepted by the TMs
they represent or that do not represent any TM }

Example

1 2
(b, b, R)

Code word: abaabababb ∈ ALAN
12 / 22

More on ALAN

• If a TM accepts everything, then its code word is not in ALAN
• If a TM rejects everything, then its code word is in ALAN
• If a code word is malformed then its in ALAN
• The code word for a TM accepting PALINDROME is not a

PALINDROME; therefore, this code word is in ALAN

Approach: We will show that ALAN cannot be r.e. by contradiction

Claim: ALAN is recursively enumerable... so there is a TM, T , that
accepts it

�estion: Is code(T) a word in the language ALAN or not?

13 / 22

ALAN

14 / 22

ALAN

15 / 22

ALAN is not R.E. — and UTMs
Theorem
Not all languages are recursively enumerable

See: liar’s paradox

The Universal Turing Machine

A universal TM, a UTM, is a TM that can be fed as input a string
composed of two parts:

1 an encoded program of any TM T followed by a marker

2 data

The operation of the UTM is that, no ma�er what machine T and no
ma�er what the data string is, the UTM will operate exactly on the
data as if it were T . The TAPE-HEAD would also point to exactly
what T would have.

Theorem
Universal Turing Machines exist 16 / 22

UTMs Exist

• We have already defined a UTM.
• We have already defined ALAN as all CWL words that are not

accepted by the TMs they might represent.
• Now consider...

Definition
Let MATHISON be the language of all CWL words that do represent
TMs and are accepted by the very machines they do represent

Theorem
MATHISON is recursive enumerable

Proof.
The TM that accepts MATHISON is like a UTM. When we start with
an input string, S, we convert the tape to the following:

S $ S ∆...
And run the machine �

17 / 22

Recursively Enumerable and Recursive

Theorem
The complement of a recursively enumerable language might not be
recursively enumerable

Proof.
Because CWL is regular, CWL′ is also regular. Because CWL′ is
regular, it’s also recursively enumerable. L = CWL′+MATHISON is
recursively enumerable, but it’s complement (L′ =ALAN) is not �

Theorem
There are recursively enumerable languages that are not recursive

Proof.
The language L defined is not recursive because that means ALAN
would be r.e. (but it is not) �

18 / 22

Decidability

Definition
Suppose we are given an input string w and a TM T . Can we tell
whether or not T halts on w? This is called the halting problem.

Theorem
There is no TM that can accept any string, w, and any coded TM, T , and
always decide correctly whether T halts on w. In other words, the
halting problem cannot be decided by a TM.

Proof.

• Assume a TM answers the halting problem – call it HP
• Modify HP (creating HP2) by making it loop forever if it was

about to print “yes” and halt. If it was to print “no” make no
change

Continued...
19 / 22

The Halting Problem

Proof.

• Add a subprogram (preprocessor) to the front of HP2

• Take the le�-of-# part and decide whether it is a word in CWL.
• If the input is, then the preprocessor deletes the w part of the

input and puts two copies of the same string onto the TAPE and
reruns HP2

• This means HP2 will analyze whether the code word passed
accepts its own code word as input. If the answer is “yes” then
the modified machine loops forever
• If the answer is “no” then it prints “no” and halts.
• HP2 accepts exactly the language ALAN. But ALAN is not

recursively enumerable

�

20 / 22

Other Theorems of Decidability

Theorem
There is no TM that can decide for every TM — fed into it in encoded
form — whether or not it accepts the word λ

Theorem
There is no TM that — when fed the code word for an arbitrary TM —
can always decide whether the encoded TM accepts any words. In other
words, the emptiness question for r.e. languages cannot be decided by
TM.

Theorem
There does not exist a TM that can decide — for any encoded TM fed
into it — whether or not the language of T is finite or infinite

21 / 22

Homework 11b

3 [4pts each] Show that each of the following languages is
recursive by finding a TM that accepts them and crashes on
strings in their complement
• EVEN-EVEN
• EQUAL

4 [4pts each] Decode the following words from CWL into their
corresponding TMs and determine which are in ALAN and
which are in MATHISON
• abaabbbbab
• abaaabaaabbaaabaababbbb
• abaaabaaabaaaabaababbab

22 / 22

