STATISTICAL ESTIMATION AND PREDICTION

CSCI 452: Data Mining

Still to Come Today

- Statistical Estimation and Prediction
- Measuring Standard Error, Confidence Intervals
- Simple Linear Regression
- Evaluating LM using Testing Set
- More R Basics

Statistical Analysis Motivation

- If estimation and prediction are considered to be data mining tasks, then statistical analysts have been performing data mining for over a century!
- □ These slides:
 - Examination of some traditional methods of estimation and prediction based on statistical analysis

Univariate Statistical Analysis

- <u>Univariate</u>: analyzing one variable a time
 - Point estimation for population means
 - Confidence interval estimation for population means...
- □ <u>Multivariate</u>: analyzing *more than one variable*

Churn Dataset

- From UCI Machine Learning Repository
- □ In D2L
- □ 3333 records (customers)
- 20 predictor variables
- 1 target variable: churn (whether or not customer left the company)

Churn variables

- State: categorical (50 states + DC)
- Account Length: integer (how long account has been active)
- Area Code: categorical
- Phone Number: (can be used for customer ID)
- International Plan: binary (yes or no)
- Voice Mail Plan: binary
- Number of Voice Mail Messages: integer
- Total Day Minutes: continuous (minutes of day calls by customer)
- Total Day Calls: integer
- Total Day Charge: continuous

Churn variables (cont.)

- Total Evening Minutes
- Total Evening Calls
- Total Evening Charge
- Total Night Minutes
- Total Night Calls
- Total Night Charge
- Total International Minutes
- Total International Calls
- Total International Charge
- Number of Calls to Customer Server: integer
- Churn: binary (whether or not customer has left the company)

Desired Results

- We would like our findings from analyzing the Churn dataset to be applicable to all customers (the <u>population</u>), not just the subset of 3333 customers in the dataset (the <u>sample</u>).
- □ Sample needs to be *representative* of the population
 - If not, (sample characteristics deviate systematically from the population characteristics), statistical inference should not be applied.

Vocabulary

- <u>Parameter</u>: a characteristic of the population
 - Example: mean number of customer service calls, of all phone customers
- □ <u>Statistic</u>: a characteristic of the sample
 - Example: mean number of customer service calls, for customers in the sample
 - **3333** customers in Churn sample, mean is 1.563
 - ???? Customers in population, mean is ????

□ Values of population parameters are usually *unknown*.

Symbols

	Sample Statistic	Estimates	Population Parameter	
Mean	$\overline{\mathcal{X}}$	→	μ	Pronounced "myu"
Standard Deviation	S	→	σ	"sigma"
Proportion	р	→	π	"pi"

Estimation

- <u>Point Estimation</u>: the use of a single known value of a statistic to estimate the population parameter
 Examples:
 - Using sample mean to estimate the population mean
 - Using the sample 27th percentile to estimate the population 27th percentile
 - Image: statistic to estimate a population parameter

How confident are we in our estimates?

- Point estimates will "almost always" have some error: <u>sampling error</u>
 - Example: Distance between the observed sample mean and the unknown population mean

$$\left|\overline{x}-\mu\right|$$

Since the true value of the parameter are usually unknown, the value of the sampling error is usually unknown.

How close is the point estimate?

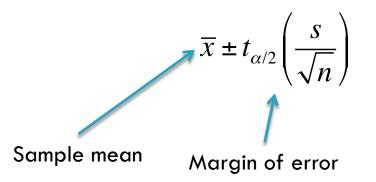
- Point estimates have no measure of confidence in their accuracy.
 - Estimate may be close to the value of the target parameter (small sampling error)
 - Estimate may be far from the value of the target parameter (large sampling error)

Confidence Interval Estimation

- Confidence Interval Estimate: interval produced from a point estimate, with an associated <u>confidence level</u> specifying the probability that the interval contains the parameter
- □ General Form:
 - point estimate ± margin of error
 - "margin of error" as a measure of precision for the estimate

t-interval

□ *t*-interval for the population mean:



- t-interval may be used, when either:
 - 1. Population is <u>normal</u>
 - 2. Sample size is large

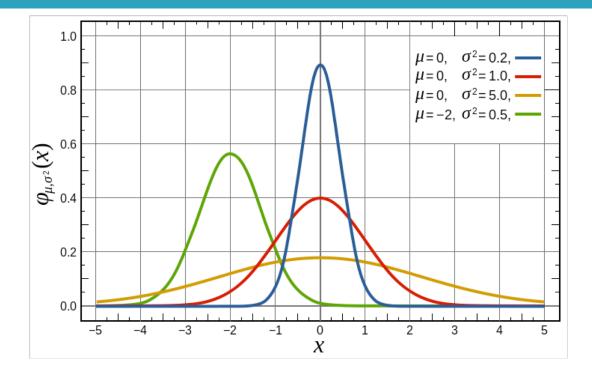
Normal Population Distribution

- Probability Theory
- Normal Distribution also called Gaussian <u>Distribution</u>
 - continuous probability distribution
 - "bell curve" shape

$$f(x,\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

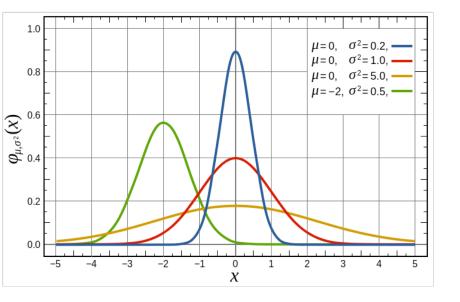
Different shapes depending on specified μ and σ

Normal Population Distribution



"Standard" normal distribution when $\mu=0$ and $\sigma=1$

Normal Population Distribution

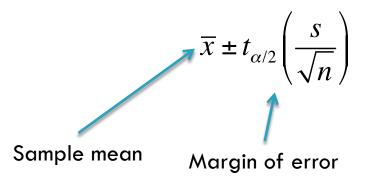


 Notice: value of the normal distribution approaches zero when x is more than a few standard deviations away from the mean

t-interval

When will margin of error be small?

□ *t*-interval for the population mean:

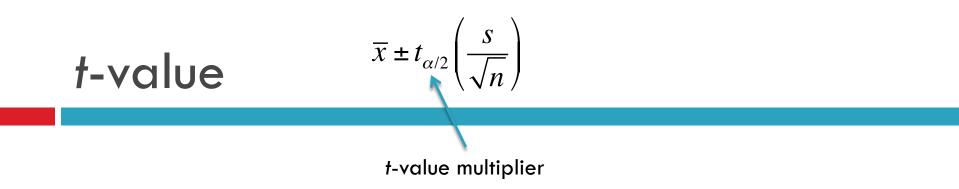


- □ *t*-interval may be used, when either:
 - 1. Population is <u>normal</u>
 - 2. Sample size is large

Standard Error

Can expect small standard error, whenever:

- 1. Large sample size
- 2. Variance is small
- Standard Error: how much you expect a value averaged from several measurements to vary from the true population value
 - Standard deviation divided by root of sample size
- $\frac{s}{\sqrt{n}}$
- Standard Deviation: how much you expect an individual measurement to vary from the average



- Dependent on:
 - 1. sample size
 - 2. desired confidence level
- Specified by analyst (usually with 95% confidence level)
 - **α**=1-.95=.05

t-values

http://www.statisticsmentor.com/tables/table_t.htm

□ Interested in:

Df ("<u>degrees of freedom</u>") = sample size - 1

■ df = n - 1

Churn Example 1

95% *t*-interval for the mean number of customer service calls for all customers:

$$\overline{x} \pm t_{\alpha/2} \left(\frac{s}{\sqrt{n}} \right)$$

$$1.563 \pm 1.96(1.315 / \sqrt{3333})$$

$$1.563 \pm 0.045$$

$$(1.518, 1.608)$$

Reduce sample size to 28
R

Churn in R

- Loading Churn
- Calculating mean, sd
- Looking up t-value
- Performing a one sample t-test

Churn Example 2

- Let's only select customers who have:
 - Enrolled in the International Plan
 - Enrolled in the VoiceMail Plan
 - >= 200 day minutes
- Reduces sample from 3333 to 28 customers
 - Still large enough to construct the confidence interval

$$\overline{x} \pm t_{\alpha/2} \left(\frac{s}{\sqrt{n}} \right)$$

 $1.607 \pm 2.051(1.892 / \sqrt{28})$ 1.607 ± 0.733 (0.874, 2.340)

Churn 2 in R

Selecting subset of customers

How to Reduce the Margin of Error?

- □ Margin of Error is function of:
 - 1. t-value (depends on confidence level and sample size)
 - 2. Sample standard deviation (characteristic of data)
 - 3. *n*, the sample size
- To decrease margin of error:
 - 1. NO: decrease confidence level
 - 2. YES: increase sample size

References

- Data Mining and Business Analytics in R, 1st edition, Ledolter
- An Introduction to Statistical Learning, 1st edition, James et al.
- Discovering Knowledge in Data, 2nd edition, Larose et al.