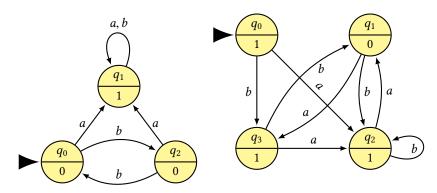
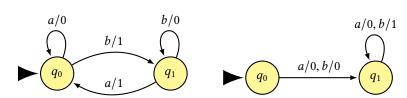
CSCI 340 — Homework 5


Dr. Schwartz

 $1. \ \ Given the following transition and output tables, produce their Moore machines$


(a)				
	state	a	b	Output
	q_0	q_0	q_1	1
	q_1	q_0	q_2	0
	q_2	q_2	q_2	1
	q_3	q_1	q_1	0

(b)				
	state	a	b	Outpu
	q_0	q_3	q_2	0
	q_1	q_1	q_0	0
	q_2	q_2	q_3	1
	q_3	q_0	q_1	0

2. Given the following Moore machines, produce their transition and output tables
(a) (b)

- 3. Convert the above Moore machines to Mealy machines
- 4. Convert the following Mealy machines to a Moore machine(a)(b)

5. Design a machine to perform a parity check on the input string. The output of the string ends in 1 if the total number of 1-bits in the input is odd and 0 if the total number of 1-bits is even. Did you choose a Mealy or Moore machine? Why?