
CSCI 340: Computational Models

Kleene’s Theorem

Chapter 7 Department of Computer Science



Unification

In 1954, Kleene presented (and proved) a theorem which (in our
version) states that if a language can be defined by any one of the
three ways, then it can be defined by the other two.

All three of these methods of defining languages are equivalent.

Theorem
Any language that can be defined by:
• regular expression, or
• finite automaton, or
• transition graph

can be defined by all three methods.

1 / 26



How do we prove this theorem?

• This theorem is the most important and fundamental result in
the theory of finite automata
• We need to carefully prove that it is correct
• We will do so by introducing four algorithms that enable us to

construct the corresponding machines and expressions
• The general logic of this proof is as follows:

1 Show that the set of all FAs can be defined by a set of TGs
2 Show that the set of all TGs can be defined by a set of REs
3 Show that the set of all REs can be defined by a set of FAs

Mathematically:

[FA ⊂ TG ⊂ RE ⊂ FA] ≡ [FA = TG = RE]

2 / 26



Formal Proof of Kleene’s Theorem

Proof.
The three sections of our proof will be:

1 Every language that can be defined by a finite automaton can
also be defined by a transition graph

2 Every language that can be defined by a transition graph can
also be defined by a regular expression

3 Every language that can be defined by a regular expression can
also be defined by a finite automaton

When we have proven these three parts, we have finished our
theorem �

Proof of Part 1: FA ⊂ TG.
Every finite automaton is itself already a transition graph. Therefore,
any language that has been defined by a finite automaton has
already been defined by a transition graph. �

3 / 26



Proof of Part 2: TG ⊂ RE

• We will prove part 2 by constructive algorithm
• Present a procedure that takes a TG and yields an RE which

defines the same language
• It must work for every conceivable TG
• It must guarantee to finish its job in a finite time
• It does not have to be a “good” algorithm – it just has to work

How We Wish It Could Work
Look at the machine, figure out its language, and write down an
equivalent regular expression

• people are not as reliably creative as they are reliable drones
• we don’t want to wait for DaVinci to be in the suitable mood
• all cleverness should be incorporated into the algorithm

4 / 26



Proof of Part 2: TG ⊂ RE

Algorithm

1 Create a unique, un-enterable final state and a unique,
un-leaveable initial state

2 One-by-one, in any order, bypass and eliminate all the
non-initial or final states in the TG.
• A state is bypassed by connecting each incoming edge with

each outgoing edge.
• The label of each resultant edge is the concatenation of the

label on the incoming edge with the label on the loop edge (if
there is one) and the label on the outgoing edge

3 When two states are joined by more than one edge going in the
same direction, unify them by adding their labels

4 Finally, when all that remains is one edge from “initial” to “final”,
the label on that edge is a regular expression that generates the
same language as what was recognized by the original machine

5 / 26



Example for Part 2: TG ⊂ RE

q0 q1

q2

q3

q4
λ

a

b

a

b

a

b

a

λ

Eliminating states in the order: q1, q2, q3

6 / 26



Example for Part 2: TG ⊂ RE

q0

q2

q3

q4

a

b

a

b

a

b

a

λ

A�er eliminating q1

6 / 26



Example for Part 2: TG ⊂ RE

q0 q3 q4

ab∗a

b + ab∗a

a + bb∗a

λ + bb∗a

A�er eliminating q2

6 / 26



Example for Part 2: TG ⊂ RE

q0 q4
ab∗a + [b + ab∗a][a + bb∗a]∗[λ + bb∗a]

A�er eliminating q3

Yielding:

ab∗a + [b + ab∗a][a + bb∗a]∗[λ + bb∗a]

6 / 26



Example for Part 2: TG ⊂ RE

q0 q1

q2

q3

q4
λ

a

b

a

b

a

b

a

λ

Eliminating states in the order: q3, q2, q1

7 / 26



Example for Part 2: TG ⊂ RE

q0 q1 q2 q4
λ a + ba∗b

ba∗

b + aa∗b

a + aa∗

A�er eliminating q3

7 / 26



Example for Part 2: TG ⊂ RE

q0 q1 q4
λ [a + ba∗b][b + aa∗b]∗[a + aa∗]

ba∗

A�er eliminating q2

7 / 26



Example for Part 2: TG ⊂ RE

q0 q4
ba∗ + [a + ba∗b][b + aa∗b]∗[a + aa∗]

A�er eliminating q1

Yielding:

ba∗ + [a + ba∗b][b + aa∗b]∗[a + aa∗]

7 / 26



Proof of Part 3: RE ⊂ FA
Proof.

1 There is an FA that accepts any particular le�er of the alphabet.
There is an FA that accepts only the word λ.

2 If there is an FA called FA1 that accepts the language defined by
the regular expression r1, and there is an FA called FA2 that
accepts the language defined by the regular expression r2, then
there is an FA (called FA3) that accepts the language defined by
(r1 + r2), the sum language.

3 If there is an FA1 that accepts the language defined by regular
expression r1 and an FA2 that accepts the language defined by
regular expression r2, then there is an FA3 that accepts the
language defined by the concatenation r1r2, the product
language.

4 If r is a regular expression and FA1 accepts language (r), then
there exists FA2 where it accepts the language (r∗) [Kleene Star].

� 8 / 26



Proof of Part 3 Rule 1

Rule 1
There is an FA that accepts any particular le�er of the alphabet.
There is an FA that accepts only the word λ.

q0 q1

q2

x

e ∈ Σ | e , x e ∈ Σ

e ∈ Σ

q0 q1
all Σ

all Σ

9 / 26



Proof of Part 3 Rule 2

Rule 2
If FA1 accepts language(r1) and FA2 accepts language(r2)
then an FA3 exists and accepts language(r1 + r2)

The general description is as follows:
• FA1 has states x1, x2, x3, . . .

• FA2 has states y1, y2, y3, . . .

• We will construct FA3 with states z1, z2, z3, . . .
• each zk is of the form xi or yj
• xstart or ystart is the start state of FA3
• zk (= xi or yj) is a final state IFF xi is final or yj is final

10 / 26



Example for Part 3 Rule 2

FA1

x1 x2 x3

a
b

b

a

a, b

FA2

y1 y2

b
a

a

b

Remainder of Exercise on Chalkboard (show (L1 + L2))

11 / 26



Proof of Part 3 Rule 3

Rule 3
If FA1 accepts language(r1) and FA2 accepts language(r2),
then an FA3 exists and accepts language(r1r2)

• Make a z-state for every non-final x-state in FA1, reached before
ever hi�ing a final state on FA1

• For each final state in FA1, we establish a z-state that expresses
either (1) we are continuing on FA1 or beginning on FA2.
• Initial states are the initial states from FA1

• Final states are the z-states that represent the disjunction of any
final state from FA2

12 / 26



Example of Part 3 Rule 3

FA1

x1 x2 x3

a
b

b

a

a, b

FA2

y1 y2

a, b

a, b

Remainder of Exercise on Chalkboard (show L1L2)

13 / 26



Proof of Part 3 Rule 4

Rule 4
If r is a regular expression and FA1 accepts language (r), then there
exists FA2 where it accepts language (r∗) (a.k.a. the Kleene Star)

• Create a state for every subset of x’s. Cancel any subset that
contains a final x-state, but does not contain the start state.
• For all remaining non-empty states, draw an a-edge and b-edge

to the collection of x-states reachable in the original FA from the
component x’s by a- and b-edges, respectively.
• Call the null subset a initial-and-final state and connect it to

whatever states the original start state is connect to by a- and
b-edges (even the start state)
• Finally, mark states as final if the contain an x-component that

is a final state of the original FA

14 / 26



Example of Part 3 Rule 4

FA1

y1 y2

b
a

b

a

Remainder of Exercise on Chalkboard (show L1
∗)

15 / 26



Part 3 Recap

1 There is an FA that accepts any le�er or λ

2 If FA1 accepts r1 and FA2 accepts r2,
then there exists FA3 accepting r1r2

3 If FA1 accepts r1 and FA2 accepts r2,
then there exists FA3 accepting r1 + r2

4 If FA1 accepts r1 then there exists FA2 accepting r1∗

We can construct any regular expression through reapplications of
the following four rules above.

Therefore, any RE can be converted into an FA.

16 / 26



Nondeterministic Finite Automata

• Finite Automata introduced up to this point have all been
deterministic
• Transition Graphs are non-deterministic by default but can

also be much more complicated.
• Maybe there exists a happy medium between the two?

NFA
is a type of Transition Graph
• which has a unique start state
• where each edge has a single alphabet le�er
• and where many a- and b-edges could come out of each state

Invented by Rabin and Sco� in 1959

17 / 26



Nondeterministic Finite Automata

• Finite Automata introduced up to this point have all been
deterministic
• Transition Graphs are non-deterministic by default but can

also be much more complicated.
• Maybe there exists a happy medium between the two?

NFA
is a type of Transition Graph
• which has a unique start state
• where each edge has a single alphabet le�er
• and where many a- and b-edges could come out of each state

Invented by Rabin and Sco� in 1959

17 / 26



Examples of NFAs

x0

x1

x2

x3 x4

a

a

a

a

y0 y1 y1

a, b

a a

a, b

z0

z1

z2

z3

a

b

a, b

a

a, b

b

18 / 26



Eliminate all Loop States

r1

r2

r3

t1

t2

t3

s

α

β

γ

χ

ψ

ω

a

Maybe it would be cool if we could remove all loops?

19 / 26



Eliminate all Loop States

r1

r2

r3

t1

t2

t3

s

s′α

β

γ

χ

ψ

ω

a

duplicate the state

19 / 26



Eliminate all Loop States

r1

r2

r3

t1

t2

t3

s

s′α

β

γ

χ

ψ

ω

aa

remove loop and add transitions

19 / 26



Eliminate all Loop States

r1

r2

r3

t1

t2

t3

s

s′α

β

γ

χ

ψ

ω

aa

χ

ψ

ω

copy all outgoing transitions to new state

19 / 26



Example

All strings with a triple a followed by a triple b.

Should we accept bbbaaabbb ?

20 / 26



Theorems and Proofs of NFAs

Theorem
For every NFA, there is some FA (DFA) that accepts exactly the same
language

Proof.

1 Using Part 2 from before, convert the NFA into an RE

2 Using the four rules from Part 3 from before, construct an FA
that accepts the RE generated in (1)

3 Because we proved each part of the proof prior, we are done

�

Wait... isn’t that crazy complicated and borderline cheating?

21 / 26



Theorems and Proofs of NFAs

Theorem
For every NFA, there is some FA (DFA) that accepts exactly the same
language

Proof.

1 Using Part 2 from before, convert the NFA into an RE

2 Using the four rules from Part 3 from before, construct an FA
that accepts the RE generated in (1)

3 Because we proved each part of the proof prior, we are done

�

Wait... isn’t that crazy complicated and borderline cheating?

21 / 26



NFA to DFA Algorithm

The Big Picture: Remember “Rule 4” from Part 3 which tells us to
represent new states as a choice of x-states

All states in the (D)FA we will produce will also be the collections of
states from the original NFA.

Every time we encounter a transition, we must “follow” that
transition for each state in where we were

Every time we try to take an a- or b-transition which does not
collectively exist across all NFA states in our current collection, we go
to a common hell state – of which there is never any escape

22 / 26



NFA to DFA – Trap State

q0

q1

q2

q3

a

b

b

a

At q0 we have exactly one a-transition and one b-transition. Next!

23 / 26



NFA to DFA – Trap State

q0

q1

q2

q3∅

a

b

b

a

a, b

At q1 we have one b-transition BUT no a-transition.
We must (1) create a trap state and (2) make an a-transition to it

23 / 26



NFA to DFA – Trap State

q0

q1

q2

q3∅

a

b

b

a

a, b

a

23 / 26



NFA to DFA – Trap State

q0

q1

q2

q3∅

a

b

b

a

a, b

a

b

At q2 we have one a-transition BUT no b-transition.
We must make an b-transition from q2 to the trap state

23 / 26



NFA to DFA – Trap State

q0

q1

q2

q3∅

a

b

b

a

a, b

a

b

a, b

At q3 we have no transitions, so we must create a transition for a and
b to the trap state

23 / 26



Adding NFAs to Kleene’s Theorem

Proof.

1 The following NFAs can accept {a}, {b} and {λ} respectively

a b

2 Because of our theorem “For every NFA there is some FA that
accepts exactly the same language”, there is an equivalent TG and
RE for a given NFA

�

24 / 26



Simplifying the creation of FA1 + FA2

Algorithm

1 Introduce a new and unique state state with two outgoing
a-edges and two outgoing b-edges

2 Connect each of the edges to the states that follow the start of
both FA1 and FA2.

3 Remove the “start” markers for the states which had originally
started FA1 and FA2

4 Using the algorithm provided earlier, convert the NFA into an FA

25 / 26



Example

x0 x1 y0

y1

y3

y2
b

a a, b
a

b

b

a

b

a
a

b

26 / 26



Example

x0 x1 y0

y1

y3

y2
b

a a, b
a

b

b

a

b

a
a

b

Introduce a new and unique start state
26 / 26



Example

x0 x1 y0

y1

y3

y2
b

a a, b
a

b

b

a

b

a
a

b

a

a

Add outgoing a-transitions to the follow states of each FA
26 / 26



Example

x0 x1 y0

y1

y3

y2
b

a a, b
a

b

b

a

b

a
a

b

a

a

b

b

Add outgoing b-transitions to the follow states of each FA
26 / 26



Example

x0 x1 y0

y1

y3

y2
b

a a, b
a

b

b

a

b

a
a

b

a

a

b

b

Remove the two “start”s which had originally started the two FAs
26 / 26


