
CSCI 340: Computational Models

Pushdown Automata

Chapter 14 Department of Computer Science



A New Format for FAs

• Regular Languages are a strict subset of Context-Free Languages
• We want to make a machine that can accept CFGs/CFLs.
• But where to begin? Let’s start with an FA.

Step 1: Input String→ Input Tape

We always had some input string for an FA, but it was never formally
stored anywhere. Now, let’s introduce an input tape.
• It must be long enough to support any arbitrary-length string,

so it is infinitely long — yikes, that’s expensive $$$
• Some people use the silly term “half-infinite” for this condition

(which is like being half sober)

aaab a a a b ∆

1 / 18



A New Format for FAs

Step 2: Separating Initial/Final/Reject

With FAs, a state could be initial, accepting, both, or neither.
At each state we always read a single le�er.

q0 START READ REJECT
∆

q1 READ ACCEPT
∆

2 / 18



A New Format for FAs (Example)

q0 q1

b

a

a

b

START READ READ

REJECT ACCEPT

∆ ∆

b

a

a

b

3 / 18



Leaving the Realm of FAs

Step 3: Introduce a Pushdown Stack

• We have introduced these new primitives so we can easily add
two additional operations: PUSH α and POP
• We will leverage the use of a stack to remember information

which we can react on later
• PUSH α will add the character α to our stack. NOTE: what is

stored on the stack does not need to match Σ

PUSH b

• POP will remove the “top” character on the stack and react on it
in some way through outgoing edges. If the stack is empty, ∆
(the empty character) is “returned”

POP ∆

a

b 4 / 18



The Pushdown Automata

1 An alphabet Σ of input le�ers

2 An input TAPE (infinite in one direction). Initially the string of
input le�ers is placed on the TAPE at the beginning. The rest of
the TAPE is blank (filled with ∆s)

a a a b a ∆ ∆ ∆

3 An alphabet Γ of STACK characters

4 A pushdown STACK (infinite in one direction). Initially empty.

∆
.
.
.

5 / 18



The Pushdown Automata

5 One START state that has only out-edges

START

6 Halt states, ACCEPT and REJECT, with only in-edges.

ACCEPT REJECT

7 Finitely many non-branching PUSH states that introduce
characters from Γ onto the stack

PUSH α

6 / 18



The Pushdown Automata

8 Finitely many branching states of two kinds:
1 States that read the next unused le�er from the TAPE. This is a

READ state which may have out edges from Σ or ∆. This can be
non-deterministic.

READ ∆

a

b

2 States that read the top character of the STACK. This is a POP
state which may have out edges from Γ or ∆. This can be
non-deterministic.

POP ∆

β

γ
7 / 18



“Running” Input on a Pushdown Automaton

• To run a string of input le�ers on a PDA means to begin from
the START state and follow the unlabeled edges and labeled
edges that apply to produce a path through the graph.
• This path will either end at a halt state or crash in a branching

state when there is no corresponding edge when read/popped.
• When le�ers are read from the TAPE or characters are popped

from the STACK, they are used up and “vanish”
• An input string with a single path that ends in ACCEPT is said

to be accepted.
• An input string that can follow a selection of paths is said to be

accepted IFF at least one of the paths leads to ACCEPT
• The set of all strings accepted by a PDA is called the language

accepted by the PDA, or the language recognized by the PDA

8 / 18



PDAs and Regular Languages

Theorem
For every regular language L, there is some PDA that accepts it

Proof.
Because L is regular, it is accepted by some FA. The constructive
algorithm converting an FA to a PDA was shown at the beginning of
this presentation. �

Major di�erences between PDAs and FAs
• The length of the path formed by a given input may be di�erent

for PDAs and FAs.
• A string of 7 le�ers will have an accept or reject path of exactly 7

edges long.
• For a PDA, it may be much shorter or longer (as it depends on

the the number of READs, POPs, and PUSHes encountered, or if
ACCEPT or REJECT were prematurely encountered)

9 / 18



PDA Reduction
Theorem
Given any PDA, there is another PDA that accepts exactly the same
language with the additional property that whenever a path leads to
ACCEPT, the STACK and the TAPE contain only blanks (∆).

Proof by Constructive Algorithm.

Whenever we have the machine part:

ACCEPT

Replace it with:

READ POP ACCEPT

non-∆

∆

non-∆

∆

�
10 / 18



Board Example — Tracing aaabbb∆

START

READPUSH X

POP READ

POP

REJECT

ACCEPT

a

b

∆

∆

X

a

b

∆

∆

X

11 / 18



Deterministic and Non-Deterministic PDAs

• A deterministic PDA is one for which every input string has a
unique path through the machine
• A non-deterministic PDA is one for which at certain times we

may have to choose among possible paths through the machine.
• If there exists some path such that the input string leads to an

ACCEPT state, then the input string is accepted
• If all possible paths lead to REJECT state(s), then the input string

is rejected
• If a choice to be made is not feasible/possible, then the machine

crashes and the input is rejected

• Non-deterministic PDAs are more powerful than
Deterministic PDAs (and we will discuss this later)

12 / 18



Example: PALINDROMEX

The language PALINDROMEX contains all words of the form:

s X reverse(s)

where s is any string in (a + b)∗. The words in the language are:
{X aXa bXb aaXaa abXba baXab bbXbb aaaXaaa aabXbaa . . . }

First part of the machine:

START

READ
PUSH a

PUSH b REJECT

a

b ∆

X

13 / 18



Example: PALINDROMEX

Second part of the machine:

READ

POP

POP

POP

ACCEPT

REJECT
X a

b

∆
∆

a, ba

b,∆

b a,
∆

14 / 18



PALINDROMEX — Non-deterministic

Entire Machine (with REJECTs removed)

START

READ

PUSH a

PUSH b

READ

POP

POP

POP ACCEPT

a

b

X a

b

∆

∆

a

b

15 / 18



Example: ODDPALINDROME

Consider a language very similar to PALINDROMEX, but replace X
with a or b — you are le� with ODDPALINDROME

START

READ

PUSH a

PUSH b

READ

POP

POP

POP ACCEPT

a

b

a, b a

b

∆

∆

a

b

16 / 18



Chalkboard Example – EVENPALINDROME

• We have shown that PALINDROMEX and ODDPALINDROME
are very similar through PDA construction.
• How di�erent can EVENPALINDROME be?

17 / 18



Homework

For homework problems, consult the course webpage

18 / 18


