
HYBRID WORKFLOW
USING PIXAR’S TRACTOR

Jesse Lehrman | Senior Pipeline Developer | Conductor Technologies

WWW.CONDUCTORTECH.COM 2019

conductortech.com

CONTENTS

INTRODUCTION 3

USING A CONDUCTOR SUPER-BLADE 5

Overview 5

Advantages 6

Disadvantages 6

Implementation Details 6

Requirements 6

Submitting to Conductor 6

Polling Conductor 7

Custom Tractor Environment Handler 8

Configuring the Super-Blade 9

Adding a Menu Item 11

Dependency Scanning 11

Next Steps 11

CONCLUSION 13

INTRODUCTION

Conductor ships with a set of plugins to allow artists to directly submit scenes to be rendered on
the Conductor platform. This allows users to get up and running very quickly and satisfies the
requirements for individual artists or smaller studios.

When looking at larger studios, there is a desire to have artists focus on their specialized tasks.
Decisions about where to render need to fall onto render wranglers and production. Artists have
very little need to know anything about the render farm at all. Their interest is in submitting the
renders and getting the results quickly.

This paper outlines how, on a technical level, to integrate Conductor into Pixar’s Tractor, a popular
render farm management system. The goal of this paper is to present a method to integrate
Conductor into an existing render farm management system so that studios can maintain their
current procedures and policies, sheltering artists from the decisions of the ifs and hows of
submitting a job to Conductor.

Given that there is little standardization in the industry, this paper doesn’t offer a turnkey solution
for integration. It’s a guide with concrete code examples on how to accomplish the integration. A
lot of the code and configuration can be used as is.

Where the code will likely need to be modified,
it’s clearly indicated with the following icon:

NOTE

Can I run Tractor-blade on a Conductor instance?

We are currently exploring this workflow. For more info, please contact: info@conductortech.com.

3

mailto:info@conductortech.com

Throughout this guide, a Maya render job with a simple hierarchy is used. This is for simplicity
purposes; the techniques outlined should work with the most complex jobs.

Additionally, many studios separate the exporting of render scene descriptions (.ass, .rib, .vrscene,
etc.) from the rendering process. While Conductor doesn’t offer this functionality out of the box, it
is possible but beyond the scope of this paper.

All code examples in this paper are snippets of larger scripts.
These can all be downloaded here.

4

INTRODUCTION | HYBRID WORKFLOW USING PIXAR’S TRACTOR

https://github.com/AtomicConductor/hybrid_examples.git

USING A CONDUCTOR SUPER-BLADE

Overview

This method of integrating Conductor into Tractor involves the use of a Conductor super-blade. A
Conductor super-blade has an infinite1 number of slots. This blade polls Conductor for jobs and
pipes the logs directly back to Tractor. A job is submitted to Conductor when a user selects “Send
to Conductor” from a context menu in the Tractor dashboard and then the Tractor job is assigned
to the Conductor super-blade.

With this method, no new Tractor tasks are created. A custom environment handler is used to
swap the command being executed.

 1 In practice, a very high number (ex: 99999) is used

NOTE

Many studios have unique Tractor job hierarchies. The job structure used in this document is kept
minimal for demonstration purposes. See the job matching function on how to accommodate a
studio’s unique job hierarchy.

JOB SUBMITTED
TO TRACTOR

JOB IS
SUBMITTED TO
CONDUCTOR

TRACTOR POLLS
CONDUCTOR

FOR OUTPUT +
STATUS

TRACTOR JOB
DOWNLOADS

OUTPUT FROM
CONDUCTOR

TRACTOR JOB IS
COMPLETED

JOB IS SENT TO
CONDUCTOR VIA THE

TRACTOR DASHBOARD

RUN ON CONDUCTOR SUPER-BLADE

5

Advantages

Achieved solely via Tractor configuration, plugins and external scripts.
Completely transparent to artists
No additional Tractor jobs or tasks required

Disadvantages

Dependency scanning is performed for non-Conductor jobs
Requires an on-site resource for the Conductor super-blade
Conductor jobs still need to be managed from the Conductor dashboard

Implementation Details

Requirements
Conductor Client API
Tractor Query Python API

Submitting to Conductor
This script takes a list of Tractor jobs as input and submits them to Conductor. There are two
Python modules used:

ConductorJob - Wraps the Conductor submission process. Child classes exist for different job types.
JobCommand - Parses and obtains details about a command-line string.

For more details on these modules, please see the code-level documentation.

 The basic flow of this script is:

•
•

•
•

•
•

•

•
•

•

6

USING A CONDUCTOR SUPER-BLADE | HYBRID WORKFLOW USING PIXAR’S TRACTOR

JOB IS
SUBMITTED TO
CONDUCTOR

CONDUCTOR
TASKS ARE

MATCHED TO
TRACTOR TASKS

TRACTOR TASKS ARE
UPDATED WITH THEIR

CORRESPONDING
JOB ID + TASK ID

(USING ENV KEYS)

TRACTOR JOB AND
TASKS ARE UPDATED
WITH A ‘CONDUCTOR’

SERVICE KEY

This submission part of this script is not so different than submitting any other job to Conductor.
The only thing that is unique is that the Conductor job parameters are constructed from a Tractor
job. It also allows for overriding job parameters by using environment variables. This script is
intended to be triggered by a new Tractor menu command. Due to this, it’s important to add a
shebang with the path to the Python executable at the top.

The last method, update_tractor_tasks() updates the Tractor job entity so that it has the
correct service key that will assign it to the Conductor super-blade. Tractor command entities are
updated so that they have the environment keys conductor_jid and conductor_tid which link
them to a unique job and task in Conductor. These environment keys are converted into environment
variables by the custom EnvironmentHandler and then used by the polling script.

The function match_tractor_commands_to_conductor_tasks() is critical and matches the
Tractor command to the corresponding Conductor task. This function will likely need to be modified
to suit the needs of a specific studio. In its current form, it matches based on the start and end
frames. If a job contains multiple layers, passes, different types of tasks, etc… these will have to be
accomodated. Note that the return structure is also quite specific (and simplistic). It’s advisable to
use a purposefully built class in its place.

Polling Conductor
This script will poll a specific Conductor task for its status and log. Once the log is available, it will
be downloaded and printed so that Tractor can parse as if the job was local. This can help with
Tractor’s progress and status indicators. Once the job is complete, all the files will be downloaded.
An instance of the polling script is run on the Conductor super-blade for each Conductor task.

#!/usr/bin/python

Read data that is passed by the Tractor menu command
json_data = sys.stdin.read()

if json_data:
 jobs = json.loads(json_data)

 for job in jobs:

 tractor_job_id = job['jid']

 submitter = conductorjob.ConductorJob.create_from_tractor_job(job_id=tractor_job_id)
 conductor_job_id = submitter.submit_job()

 update_tractor_tasks(tractor_job_id, conductor_job_id)

7

USING A CONDUCTOR SUPER-BLADE | HYBRID WORKFLOW USING PIXAR’S TRACTOR

while True:

Get the task status
response = json.loads(get_job_status(job_label, task_label))
task = response['data'][0]
task_status = task['status']

if task_status in TASK_LOG_READY_STATUSES:

Get any new lines in the log
json_response = get_task_log(job_id=job_label,

task_id=task_label,
first_line=first_log_line)

log_response = json.loads(json_response)

try:
first_log_line += int(log_response['new_num_lines'][0])
print "\n".join(log_response['logs'][0]['log'])

 # Don't fail if there's an issue with the log
except Exception, errMsg:
LOG.warning(str(errMsg))
continue

if task_status in TERMINATE_STATUSES:
break

If the task failed, there's nothing left to do.
if task_status in ['failed']:
raise Exception("Job failed")

time.sleep(poll_interval)

Custom Tractor Environment Handler
A custom environment handler is used to set certain environment variables and to replace the
Tractor command argument with the polling script. For more details on Tractor’s custom
environment handlers, please see the Tractor documentation.

The custom environment handler class has two methods; updateEnvironment() and
remapCmdArgs(). The Python file needs to be in a location that’s added to the
SiteModulesPath in blade.config (see the next section for details).

8

USING A CONDUCTOR SUPER-BLADE | HYBRID WORKFLOW USING PIXAR’S TRACTOR

https://rmanwiki.pixar.com/display/TRA/Blade+Environment+Configuration%3A+Keys+and+Handlers

In updateEnvironment(), a loose method is used to map any conductor environment keys to
environment variables. This will allow additional environment keys to be added without requiring
to modify the handler.

def updateEnvironment(self, cmd, env, envkeys):

for envkey in envkeys:
if envkey.startswith("conductor_"):
key, value = envkey.split("=")
env[key.upper()] = value

return TrEnvHandler.updateEnvironment(self, cmd, env, envkeys)

In remapCmdArgs(), the current command is completely replaced with a call to the polling script
from the previous step. No arguments are necessary since all the parameters are passed via
environment variables.

 def remapCmdArgs(self, cmdinfo, launchenv, thisHost):

return ["python", "conductor_poll.py"]

Configuring the Super-Blade
A custom blade profile must be added to blade.config in order for the machine to accept
Conductor jobs as well as use the custom environment handler created in the previous step. The
ConductorSuperBlade profile should be placed before any other profiles that might also match
that blade. In this case, the blade would also match the Linux64 profile.

Ensure that the Hosts parameter properly matches the hostname of the machine you will be
using as the Conductor super-blade..

The Provides parameter must match the service key set on the Tractor job in the Conductor
submit script.

MaxSlots should be an arbitrary high number. This won’t set a limit on how many jobs can be
sent and run on Conductor, it will limit the number of polling tasks running on the Conductor

3

9

USING A CONDUCTOR SUPER-BLADE | HYBRID WORKFLOW USING PIXAR’S TRACTOR

super-blade.

"BladeProfiles":
[
 {
 "ProfileName": "ConductorSuperBlade",
 "Hosts": {"Name": "conductor*"},
 "Provides": ["Conductor"],
 "EnvKeys": ["@merge('shared.linux.envkeys')"],
 "Capacity": {
 "MaxSlots": 5000,
 },
 },
 {
 "ProfileName": "Linux64",
 "Hosts": {"Platform": "Linux-*64bit*"},
 "EnvKeys": ["@merge('shared.linux.envkeys')"]
 }
]

In addition, environment keys need to be defined to connect them to the custom environment
handler. Here’s a sample environment keys file (shared.linux.envkeys):

[

 {

 "keys": ["default"],

 "envhandler": "default"

 "environment": {},

 },

 {

 "keys": ["conductor_jid*", "conductor_tid*"],

 "envhandler": "ConductorEnvHandler",

 "environment": {}

 }

]

NOTE

The blade.config file also contains an entry for the SiteModulesPath. This should include the
paths to the custom environment handler as well as any additional Python packages.

10

USING A CONDUCTOR SUPER-BLADE | HYBRID WORKFLOW USING PIXAR’S TRACTOR

Adding a Menu Item
A convenient method is required to execute the Conductor submit script. Outlined below is an
example of adding a menu item to the Tractor dashboard to do the submission.

In the menu.config file, add an entry under the job entity. The exec parameter must be an
absolute path to the script otherwise it’s considered to be relative to the site’s configuration
directory. Ensure permissions are correct on submit_to_conductor.py - it will be executed
by the same user running tractor-engine.

For more details on adding a menu item, please see the Tractor documentation.

Dependency Scanning
This method does not provide a discrete step for dependency scanning. While there are options to
perform the scan at the time of submission, this is not ideal as it would be the tractor-engine
machine performing the work.

While not ideal, the best option would be to perform the scan when the user submits their scene
to get rendered, saving the result in a json sidecar file that can be read at the time of submission.

Next Steps
Using the Conductor super-blade method to integrate Conductor into Tractor provides a robust way
to give control of the Conductor submission process to render wranglers and production. There
are several features that can be added to augment the experience. Below are a few suggestions.

"job":
[
{
"comment": "Set a job and all its tasks to be rendered on conductor",
"title": "Send to Conductor",
"exec": ["submit_to_conductor.py"],
"suppress": true,
"values": ["jid"],
"enabled": true

}
]

11

USING A CONDUCTOR SUPER-BLADE | HYBRID WORKFLOW USING PIXAR’S TRACTOR

https://rmanwiki.pixar.com/display/TRA/Custom+Menu+Items

Automate which jobs get sent to Conductor by querying a production management system
Export a render scene description file (.rib, .ass, etc…) locally and render in Conductor
Add additional menu items to directly control Conductor jobs and tasks

NOTE

In this method, there’s no mention of using the uploader/downloader daemons. If the uploader is
running, it will offload the file transfer from the submit script – which is desirable. If the downloader
daemon is running, it will offload the file transfer from the polling script which is desirable in terms of
performance, but undesirable from the point of job transparency (Tractor won’t be able to indicate
when the rendered files are available to the user).

12

USING A CONDUCTOR SUPER-BLADE | HYBRID WORKFLOW USING PIXAR’S TRACTOR

•
•

•

CONCLUSION

Properly integrating Conductor into a studio is key to getting the most from the platform. With an
established hybrid workflow, studios have a clear path to integrate the platform without the need
to alter their workflow or worry about the potential issues of having artists submit jobs directly.

Conductor is an attractive platform to expand your rendering capabilities, and with the
included code samples, it can help a studio evaluate the effort required for integration and
eventually deploy a seamless cloud enhancement to their existing workflow.

13

For more information on this, or other related topics:

contact info@conductortech.com

or visit support.conductortech.com

mailto:info@conductortech.com
support.conductortech.com

